In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.

Definition

edit

Let G be a Lie group with Lie algebra  , and PB be a principal G-bundle. Let ω be an Ehresmann connection on P (which is a  -valued one-form on P).

Then the curvature form is the  -valued 2-form on P defined by

 

(In another convention, 1/2 does not appear.) Here   stands for exterior derivative,   is defined in the article "Lie algebra-valued form" and D denotes the exterior covariant derivative. In other terms,[1]

 

where X, Y are tangent vectors to P.

There is also another expression for Ω: if X, Y are horizontal vector fields on P, then[2]

 

where hZ means the horizontal component of Z, on the right we identified a vertical vector field and a Lie algebra element generating it (fundamental vector field), and   is the inverse of the normalization factor used by convention in the formula for the exterior derivative.

A connection is said to be flat if its curvature vanishes: Ω = 0. Equivalently, a connection is flat if the structure group can be reduced to the same underlying group but with the discrete topology.

Curvature form in a vector bundle

edit

If EB is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan:

 

where   is the wedge product. More precisely, if   and   denote components of ω and Ω correspondingly, (so each   is a usual 1-form and each   is a usual 2-form) then

 

For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e.

 

using the standard notation for the Riemannian curvature tensor.

Bianchi identities

edit

If   is the canonical vector-valued 1-form on the frame bundle, the torsion   of the connection form   is the vector-valued 2-form defined by the structure equation

 

where as above D denotes the exterior covariant derivative.

The first Bianchi identity takes the form

 

The second Bianchi identity takes the form

 

and is valid more generally for any connection in a principal bundle.

The Bianchi identities can be written in tensor notation as:  

The contracted Bianchi identities are used to derive the Einstein tensor in the Einstein field equations, a key component in the general theory of relativity.[clarification needed]

Notes

edit
  1. ^ since  . Here we use also the   Kobayashi convention for the exterior derivative of a one form which is then  
  2. ^ Proof:  

References

edit

See also

edit
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy