Double layer potential

In potential theory, an area of mathematics, a double layer potential is a solution of Laplace's equation corresponding to the electrostatic or magnetic potential associated to a dipole distribution on a closed surface S in three-dimensions. Thus a double layer potential u(x) is a scalar-valued function of xR3 given by where ρ denotes the dipole distribution, /∂ν denotes the directional derivative in the direction of the outward unit normal in the y variable, and dσ is the surface measure on S.

More generally, a double layer potential is associated to a hypersurface S in n-dimensional Euclidean space by means of where P(y) is the Newtonian kernel in n dimensions.

See also

edit

References

edit
  • Courant, Richard; Hilbert, David (1962), Methods of Mathematical Physics, Volume II, Wiley-Interscience.
  • Kellogg, O. D. (1953), Foundations of potential theory, New York: Dover Publications, ISBN 978-0-486-60144-1.
  • Shishmarev, I.A. (2001) [1994], "Double-layer potential", Encyclopedia of Mathematics, EMS Press.
  • Solomentsev, E.D. (2001) [1994], "Multi-pole potential", Encyclopedia of Mathematics, EMS Press.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy