F. Riesz's theorem (named after Frigyes Riesz) is an important theorem in functional analysis that states that a Hausdorff topological vector space (TVS) is finite-dimensional if and only if it is locally compact. The theorem and its consequences are used ubiquitously in functional analysis, often used without being explicitly mentioned.

Statement

edit

Recall that a topological vector space (TVS)   is Hausdorff if and only if the singleton set   consisting entirely of the origin is a closed subset of   A map between two TVSs is called a TVS-isomorphism or an isomorphism in the category of TVSs if it is a linear homeomorphism.

F. Riesz theorem[1][2] — A Hausdorff TVS   over the field   (   is either the real or complex numbers) is finite-dimensional if and only if it is locally compact (or equivalently, if and only if there exists a compact neighborhood of the origin). In this case,   is TVS-isomorphic to  

Consequences

edit

Throughout,   are TVSs (not necessarily Hausdorff) with   a finite-dimensional vector space.

  • Every finite-dimensional vector subspace of a Hausdorff TVS is a closed subspace.[1]
  • All finite-dimensional Hausdorff TVSs are Banach spaces and all norms on such a space are equivalent.[1]
  • Closed + finite-dimensional is closed: If   is a closed vector subspace of a TVS   and if   is a finite-dimensional vector subspace of   (  and   are not necessarily Hausdorff) then   is a closed vector subspace of  [1]
  • Every vector space isomorphism (i.e. a linear bijection) between two finite-dimensional Hausdorff TVSs is a TVS isomorphism.[1]
  • Uniqueness of topology: If   is a finite-dimensional vector space and if   and   are two Hausdorff TVS topologies on   then  [1]
  • Finite-dimensional domain: A linear map   between Hausdorff TVSs is necessarily continuous.[1]
    • In particular, every linear functional of a finite-dimensional Hausdorff TVS is continuous.
  • Finite-dimensional range: Any continuous surjective linear map   with a Hausdorff finite-dimensional range is an open map[1] and thus a topological homomorphism.

In particular, the range of   is TVS-isomorphic to  

  • A TVS   (not necessarily Hausdorff) is locally compact if and only if   is finite dimensional.
  • The convex hull of a compact subset of a finite-dimensional Hausdorff TVS is compact.[1]
    • This implies, in particular, that the convex hull of a compact set is equal to the closed convex hull of that set.
  • A Hausdorff locally bounded TVS with the Heine-Borel property is necessarily finite-dimensional.[2]

See also

edit

References

edit
  1. ^ a b c d e f g h i Narici & Beckenstein 2011, pp. 101–105.
  2. ^ a b Rudin 1991, pp. 7–18.

Bibliography

edit
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy