Runcinated tesseractic honeycomb

Runcinated tesseractic honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,3{4,3,3,4}
t0,3{4,3,31,1}
Coxeter-Dynkin diagram
4-face type runcinated tesseract
tesseract
rectified tesseract
cuboctahedral prism
Cell type Cuboctahedron
Tetrahedron
Cube
Triangular prism
Face type {3}, {4}
Vertex figure triangular-antipodial antifastigium
Coxeter group = [4,3,3,4]
= [4,3,31,1]
Dual
Properties vertex-transitive

In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a runcination of a tesseractic honeycomb creating runcinated tesseracts, and new tesseract, rectified tesseract and cuboctahedral prism facets.

edit

The [4,3,3,4],          , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,3,4]:           ×1

          1,           2,           3,           4,
          5,           6,           7,           8,
          9,           10,           11,           12,
          13

[[4,3,3,4]]       ×2           (1),           (2),           (13),           18
          (6),           19,           20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]
     
     
         
×6

          14,           15,           16,           17

See also

edit

Regular and uniform honeycombs in 4-space:

Notes

edit

References

edit
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations#4D". x3o3x *b3o4x, x4o3o3x4o - sidpitit - O91
  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9.
Space Family           /   /  
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy