Jump to content

ALOPEX

From Wikipedia, the free encyclopedia

ALOPEX (an abbreviation of "algorithms of pattern extraction") is a correlation based machine learning algorithm first proposed by Tzanakou and Harth in 1974.

Principle

[edit]

In machine learning, the goal is to train a system to minimize a cost function or (referring to ALOPEX) a response function. Many training algorithms, such as backpropagation, have an inherent susceptibility to getting "stuck" in local minima or maxima of the response function. ALOPEX uses a cross-correlation of differences and a stochastic process to overcome this in an attempt to reach the absolute minimum (or maximum) of the response function.

Method

[edit]

ALOPEX, in its simplest form is defined by an updating equation:

where:

  • is the iteration or time-step.
  • is the difference between the current and previous value of system variable at iteration .
  • is the difference between the current and previous value of the response function at iteration .
  • is the learning rate parameter minimizes and maximizes

Discussion

[edit]

Essentially, ALOPEX changes each system variable based on a product of: the previous change in the variable , the resulting change in the cost function , and the learning rate parameter . Further, to find the absolute minimum (or maximum), the stochastic process (Gaussian or other) is added to stochastically "push" the algorithm out of any local minima.

References

[edit]
  • Harth, E., & Tzanakou, E. (1974) Alopex: A stochastic method for determining visual receptive fields. Vision Research, 14:1475-1482. Abstract from ScienceDirect
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy