Jump to content

Allen–Cahn equation

From Wikipedia, the free encyclopedia
A numerical solution to the one dimensional Allen-Cahn equation

The Allen–Cahn equation (after John W. Cahn and Sam Allen) is a reaction–diffusion equation of mathematical physics which describes the process of phase separation in multi-component alloy systems, including order-disorder transitions.

The equation describes the time evolution of a scalar-valued state variable on a domain during a time interval , and is given by:[1][2]

where is the mobility, is a double-well potential, is the control on the state variable at the portion of the boundary , is the source control at , is the initial condition, and is the outward normal to .

It is the L2 gradient flow of the Ginzburg–Landau free energy functional.[3] It is closely related to the Cahn–Hilliard equation.

Mathematical description

[edit]

Let

  • be an open set,
  • an arbitrary initial function,
  • and two constants.

A function is a solution to the Allen–Cahn equation if it solves[4]

where

  • is the Laplacian with respect to the space ,
  • is the derivative of a non-negative with two minima .

Usually, one has the following initial condition with the Neumann boundary condition

where is the outer normal derivative.

For one popular candidate is

References

[edit]
  1. ^ Allen, S. M.; Cahn, J. W. (1972). "Ground State Structures in Ordered Binary Alloys with Second Neighbor Interactions". Acta Metall. 20 (3): 423–433. doi:10.1016/0001-6160(72)90037-5.
  2. ^ Allen, S. M.; Cahn, J. W. (1973). "A Correction to the Ground State of FCC Binary Ordered Alloys with First and Second Neighbor Pairwise Interactions". Scripta Metallurgica. 7 (12): 1261–1264. doi:10.1016/0036-9748(73)90073-2.
  3. ^ Veerman, Frits (March 8, 2016). "What is the L2 gradient flow?". MathOverflow.
  4. ^ Bartels, Sören (2015). Numerical Methods for Nonlinear Partial Differential Equations. Deutschland: Springer International Publishing. p. 153.

Further reading

[edit]
  • http://www.ctcms.nist.gov/~wcraig/variational/node10.html
  • Allen, S. M.; Cahn, J. W. (1975). "Coherent and Incoherent Equilibria in Iron-Rich Iron-Aluminum Alloys". Acta Metall. 23 (9): 1017. doi:10.1016/0001-6160(75)90106-6.
  • Allen, S. M.; Cahn, J. W. (1976). "On Tricritical Points Resulting from the Intersection of Lines of Higher-Order Transitions with Spinodals". Scripta Metallurgica. 10 (5): 451–454. doi:10.1016/0036-9748(76)90171-x.
  • Allen, S. M.; Cahn, J. W. (1976). "Mechanisms of Phase Transformation Within the Miscibility Gap of Fe-Rich Fe-Al Alloys". Acta Metall. 24 (5): 425–437. doi:10.1016/0001-6160(76)90063-8.
  • Cahn, J. W.; Allen, S. M. (1977). "A Microscopic Theory of Domain Wall Motion and Its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics". Journal de Physique. 38: C7–51.
  • Allen, S. M.; Cahn, J. W. (1979). "A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening". Acta Metall. 27 (6): 1085–1095. doi:10.1016/0001-6160(79)90196-2.
  • Bronsard, L.; Reitich, F. (1993). "On three-phase boundary motion and the singular limit of a vector valued Ginzburg–Landau equation". Arch. Rat. Mech. Anal. 124 (4): 355–379. Bibcode:1993ArRMA.124..355B. doi:10.1007/bf00375607. S2CID 123291032.
[edit]
  • Simulation by Nils Berglund of a solution of the Allen–Cahn equation


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy