Jump to content

Appell–Humbert theorem

From Wikipedia, the free encyclopedia

In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety. It was proved for 2-dimensional tori by Appell (1891) and Humbert (1893), and in general by Lefschetz (1921)

Statement

[edit]

Suppose that is a complex torus given by where is a lattice in a complex vector space . If is a Hermitian form on whose imaginary part is integral on , and is a map from to the unit circle , called a semi-character, such that

then

is a 1-cocycle of defining a line bundle on . For the trivial Hermitian form, this just reduces to a character. Note that the space of character morphisms is isomorphic with a real torus

if since any such character factors through composed with the exponential map. That is, a character is a map of the form

for some covector . The periodicity of for a linear gives the isomorphism of the character group with the real torus given above. In fact, this torus can be equipped with a complex structure, giving the dual complex torus.

Explicitly, a line bundle on may be constructed by descent from a line bundle on (which is necessarily trivial) and a descent data, namely a compatible collection of isomorphisms , one for each . Such isomorphisms may be presented as nonvanishing holomorphic functions on , and for each the expression above is a corresponding holomorphic function.

The Appell–Humbert theorem (Mumford 2008) says that every line bundle on can be constructed like this for a unique choice of and satisfying the conditions above.

Ample line bundles

[edit]

Lefschetz proved that the line bundle , associated to the Hermitian form is ample if and only if is positive definite, and in this case is very ample. A consequence is that the complex torus is algebraic if and only if there is a positive definite Hermitian form whose imaginary part is integral on

See also

[edit]

References

[edit]
  • Appell, P. (1891), "Sur les functiones périodiques de deux variables", Journal de Mathématiques Pures et Appliquées, Série IV, 7: 157–219
  • Humbert, G. (1893), "Théorie générale des surfaces hyperelliptiques", Journal de Mathématiques Pures et Appliquées, Série IV, 9: 29–170, 361–475
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions of the American Mathematical Society, 22 (3), Providence, R.I.: American Mathematical Society: 327–406, doi:10.2307/1988897, ISSN 0002-9947, JSTOR 1988897
  • Lefschetz, Solomon (1921), "On Certain Numerical Invariants of Algebraic Varieties with Application to Abelian Varieties", Transactions of the American Mathematical Society, 22 (4), Providence, R.I.: American Mathematical Society: 407–482, doi:10.2307/1988964, ISSN 0002-9947, JSTOR 1988964
  • Mumford, David (2008) [1970], Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Providence, R.I.: American Mathematical Society, ISBN 978-81-85931-86-9, MR 0282985, OCLC 138290
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy