Jump to content

Aurica (supercontinent)

From Wikipedia, the free encyclopedia
A video showing the assembly of Aurica.

Aurica is a possible future supercontinent configuration. It is one of the four proposed supercontinents that are speculated to form within 200 million years, the others being Pangaea Proxima, Amasia, and Novopangaea. The Aurica hypothesis was created by scholars at the Geological Magazine[1] following an American Geophysical Union study linking the strength of ocean tides to the supercontinent cycle.[2] The name is a portmanteau of America and Australia, which form the core of the supercontinent. The study noted that "When tectonic plates slide, sink and shift the Earth's continents to form large landmasses, or supercontinents, ocean basins open and close in tandem. As these basins change shape, they can strike forms that amplify and intensify their tides."

Formation

[edit]

According to the Aurica hypothesis, both the Atlantic and Pacific Oceans will close, and a new ocean will replace them both. Duarte and colleagues hypothesize that a new rift (the Baikal Rift Zone) will develop in central Eurasia through Lake Baikal due to the gravitational collapse of the Himalayan plateau, cutting from western India to the Arctic, which will split Eurasia in two resulting in western Pakistan and Russia to split apart from China, India, and Mongolia. The Indian Ocean (or an ocean which could form within the East African Rift) and Southern Ocean will expand into the rift.[1]

The current northward motion of Australia and Antarctica will collide with South Korea, Japan, Indonesia, Peru, Mexico, The Western United States, and The Philippines respectively to close the Pacific, while Portugal and Morocco will collide with the Eastern United States between Florida and Maine while Ireland and the United Kingdom will merge with Canada (close to their relative positions while part of Pangaea) on the other side to close the Atlantic resulting in Cuba and Brazil to be merged with Nigeria and South Africa. The Indian and Southern Oceans will merge into a new superocean surrounding the resultant supercontinent.[1]

Alternative scenarios

[edit]

Paleogeologist Ronald Blakey has described the next 15 to 85 million years of tectonic development as fairly settled and predictable, without supercontinent formation.[3] Beyond that, he cautions that the geologic record is full of unexpected shifts in tectonic activity that make further projections "very, very speculative".[3] Three hypothetical supercontinents—"Amasia", Christopher Scotese's "Pangaea Proxima", and Roy Livermore's "Novopangaea"—were illustrated in an October 2007 New Scientist article.[4]

References

[edit]
  1. ^ a b c Duarte, João; Schellart, Wouter; Rosas, Filipe (3 October 2016). "The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation". Geological Magazine. 155: 45–58. doi:10.1017/S0016756816000716. S2CID 132854162 – via Cambridge University Press.
  2. ^ "Study proposed link between the formation of supercontinents, the strength of ocean tides". AGU.org. 11 April 2018. Archived from the original on 2018-12-08.
  3. ^ a b Manaugh, Geoff; Twiley, Nicola (23 September 2013). "What Did the Continents Look Like Millions of Years Ago?". The Atlantic. Archived from the original on 2013-09-25. Retrieved 2014-07-22.
  4. ^ Williams, Caroline; Nield, Ted (20 October 2007). "Pangaea, the comeback". New Scientist. Archived from the original on 13 April 2008. Retrieved 4 August 2016.
[edit]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy