Jump to content

Dade's conjecture

From Wikipedia, the free encyclopedia

In finite group theory, Dade's conjecture is a conjecture relating the numbers of characters of blocks of a finite group to the numbers of characters of blocks of local subgroups, introduced by Everett C. Dade.

References

[edit]
  • Dade, Everett C. (1992), "Counting characters in blocks. I", Inventiones Mathematicae, 109 (1): 187–210, Bibcode:1992InMat.109..187D, doi:10.1007/BF01232023, ISSN 0020-9910, MR 1168370, S2CID 121655449
  • Dade, Everett C. (1994), "Counting characters in blocks. II", Journal für die reine und angewandte Mathematik, 1994 (448): 97–190, doi:10.1515/crll.1994.448.97, ISSN 0075-4102, MR 1266748, S2CID 116626705
  • Dade, Everett C. (1997), "Counting characters in blocks. II.9", in Solomon, Ronald (ed.), Representation theory of finite groups (Columbus, OH, 1995), Ohio State Univ. Math. Res. Inst. Publ., vol. 6, Berlin: de Gruyter, pp. 45–59, ISBN 978-3-11-015806-9, MR 1611009


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy