Jump to content

Dysprosium titanate

From Wikipedia, the free encyclopedia
Dysprosium titanate
Names
IUPAC name
Dysprosium titanate
Identifiers
3D model (JSmol)
  • InChI=1S/2Dy.7O.2Ti/q2*+3;7*-2;2*+4
  • [Dy+3].[Dy+3].[Ti+4].[Ti+4].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2]
Properties
Dy2O7Ti2
Molar mass 532.727 g·mol−1
Density 6.8 g/cm3[1]
Structure[1]
Pyrochlore
Fd3m, cF88, No. 227
a = 1.0136 nm
8
Related compounds
Other cations
Holmium titanate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dysprosium titanate (Dy2Ti2O7 or Dy2TiO5) is an inorganic compound, specifically a ceramic of the titanate family. Two common phases of this compound exist with differing properties: Dy2Ti2O7 and Dy2TiO5. Dysprosium titanate is commonly used throughout the nuclear industry in nuclear control rods and as a host for nuclear waste.[2][3]

History

[edit]

Dysprosium titanate was one of the first materials that was discovered to be a spin ice, along with holmium titanate (Ho2Ti2O7), in 1997.[4] The existence of these materials was predicted by Linus Pauling in 1935, but neutron scattering experiments confirmed their existence as holmium titanate satisfied the model.[5]

Since its discovery as a spin ice, dysprosium titanate has continued to be a focus of research because the magnetic frustration that results from its pyrochlore lattice. In 2009, quasiparticles resembling magnetic monopoles were observed at low temperature and high magnetic field through neutron-scattering experiments.[6] The study demonstrated the existence of Dirac strings in dysprosium titanate and the presence of monopole characteristics at low temperatures.[7]

Structure

[edit]

The Dy2Ti2O7 phase exhibits a cubic pyrochlore structure where the Dy3+ ions form a network of corner-sharing tetrahedra.[4][8] It is notable for its ability to withstand structural change in the presence of radiation from high energy ions.[2]

Dy2Ti2O7 can be "stuffed" by adding additional lanthanide atoms into the pyrochlore to generate Dy2TiO5.[9] In this instance, Dy3+ is 5-coordinated with oxygen, which produces an orthorhombic structure in the Dy2TiO5 phase. This phase also possesses a large neutron absorption cross section, which makes it desirable for various nuclear applications.[3] This can, however, pose difficulties when characterizing this compound through the use of neutron diffraction.[10]

Synthesis

[edit]

Dysprosium titanate can be synthesized using various methods. The traditional synthesis process involve high-frequency induction melting of dysprosium oxide and titania in a cooled crucible. Sol-gel synthesis has also been utilized as a method to produce the compound in powder form. More recent developments have displayed the viability of mechanochemical processes using anatase and dysprosium oxide as reagents to produce dysprosium titanate nanopowders.[11][12]

Uses and Applications

[edit]

Dysprosium titanate has become a desirable material in nuclear industry because of various properties. The compound has a large neutron absorption cross-section, low thermal expansion, high heat capacity, high radiation resistance, and a high melting point,[13][14] all of which make dysprosium titanate a favorable material to use in control rods for nuclear reactors.[2][12]

Specifically, this material is used in the control rods for industrial thermal neutron reactors such as the VVER-1000 reactor type.[15]

References

[edit]
  1. ^ a b Dolgikh V.A., Lavat E.A. (1991). "Preparation of new oxide nitrides with the pyrochlore structure". Russ. J. Inorg. Chem. 36: 1389–1392.
  2. ^ a b c Sherrod, Roman; O’Quinn, Eric C.; Gussev, Igor M.; Overstreet, Cale; Neuefeind, Joerg; Lang, Maik K. (2021-04-16). "Comparison of short-range order in irradiated dysprosium titanates". npj Materials Degradation. 5 (1): 19. Bibcode:2021npjMD...5...19S. doi:10.1038/s41529-021-00165-6. ISSN 2397-2106.
  3. ^ a b Risovany, V.D.; Varlashova, E.E.; Suslov, D.N. (2000). "Dysprosium titanate as an absorber material for control rods". Journal of Nuclear Materials. 281 (1): 84–89. Bibcode:2000JNuM..281...84R. doi:10.1016/S0022-3115(00)00129-X.
  4. ^ a b Gardner, Jason S. (2010). "Magnetic pyrochlore oxides". Reviews of Modern Physics. 82 (1): 53–107. arXiv:0906.3661. Bibcode:2010RvMP...82...53G. doi:10.1103/RevModPhys.82.53.
  5. ^ Harris, M. J. (1997). "Geometrical Frustration in the Ferromagnetic Pyrochlore Ho2Ti2O7". Physical Review Letters. 79 (13): 2554–2557. doi:10.1103/PhysRevLett.79.2554.
  6. ^ "Magnetic Monopoles Detected In A Real Magnet For The First Time". Science Daily. 2009-09-04. Retrieved 2009-09-04.
  7. ^ Morris, D. J. P.; Tennant, D. A.; Grigera, S. A.; Klemke, B.; Castelnovo, C.; Moessner, R.; Czternasty, C.; Meissner, M.; Rule, K. C.; Hoffmann, J.-U.; Kiefer, K.; Gerischer, S.; Slobinsky, D.; Perry, R. S. (2009-10-16). "Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7". Science. 326 (5951): 411–414. arXiv:1011.1174. doi:10.1126/science.1178868. PMID 19729617.
  8. ^ Scharffe, S.; Kolland, G.; Valldor, M.; Cho, V.; Welter, J. F.; Lorenz, T. (2015-06-01). "Heat transport of the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7". Journal of Magnetism and Magnetic Materials. Selected papers from the sixth Moscow International Symposium on Magnetism (MISM-2014). 383: 83–87. arXiv:1406.4037. doi:10.1016/j.jmmm.2014.11.015. ISSN 0304-8853.
  9. ^ Aughterson, Robert D.; Lumpkin, Gregory R.; Thorogood, Gordon J.; Zhang, Zhaoming; Gault, Baptiste; Cairney, Julie M. (2015-07-01). "Crystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy". Journal of Solid State Chemistry. 227: 60–67. doi:10.1016/j.jssc.2015.03.003. ISSN 0022-4596.
  10. ^ Shamblin, Jacob (2016). "Crystal structure and partial Ising-like magnetic ordering of orthorhombic Dy2TiO5". Physical Review B. 94 (2): 024413. doi:10.1103/PhysRevB.94.024413.
  11. ^ Sharipzyanova, G. Kh.; Eremeeva, Zh. V.; Karlina, Y. I. (2024-03-01). "Study of the mechanical properties of dysprosium-titanate and dysprosium-hafnate nanopowders". Metallurgist. 67 (11): 1971–1977. doi:10.1007/s11015-024-01695-5. ISSN 1573-8892.
  12. ^ a b Eremeeva, Zh. V.; Panov, V. S.; Myakisheva, L. V.; Lizunov, A. V.; Nepapushev, A. A.; Sidorenko, D. A.; Vorotilo, S. (2017-11-01). "Structure and properties of mechanochemically synthesized dysprosium titanate Dy2TiO5". Journal of Nuclear Materials. 495: 38–48. doi:10.1016/j.jnucmat.2017.07.058. ISSN 0022-3115.
  13. ^ Panneerselvam, G; Venkata Krishnan, R; Antony, M. P; Nagarajan, K; Vasudevan, T; Vasudeva Rao, P. R (2004-05-01). "Thermophysical measurements on dysprosium and gadolinium titanates". Journal of Nuclear Materials. 327 (2): 220–225. Bibcode:2004JNuM..327..220P. doi:10.1016/j.jnucmat.2004.02.009. ISSN 0022-3115.
  14. ^ Lee, Byung-Ho; Kim, Han-Soo; Lee, Sang-Hyun; Sohn, Dong-Seong (2007-04-01). "Measurement of the thermal properties of gadolinium and dysprosium titanate". Thermochimica Acta. 6th KSTP Symposium. 455 (1): 100–104. Bibcode:2007TcAc..455..100L. doi:10.1016/j.tca.2006.11.033. ISSN 0040-6031.
  15. ^ Risovany, V. D.; Varlashova, E. E.; Suslov, D. N. (2000-09-02). "Dysprosium titanate as an absorber material for control rods". Journal of Nuclear Materials. 281 (1): 84–89. Bibcode:2000JNuM..281...84R. doi:10.1016/S0022-3115(00)00129-X. ISSN 0022-3115.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy