Jump to content

Metals of antiquity

From Wikipedia, the free encyclopedia

German amulet to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.
Metal production in the ancient Middle East

The metals of antiquity are the seven metals which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:[1] gold, silver, copper, tin, lead, iron, and mercury.

Zinc, arsenic, and antimony were also known during antiquity, but they were not recognised as distinct metals until later.[2][3][4][5] A special case is platinum; it was known to native South Americans around the time Europe was going through classical antiquity, but was unknown to Europeans until the 18th century. Thus, at most eleven elemental metals and metalloids were known by the end of antiquity; this contrasts greatly with the situation today, with over 90 elemental metals known. Bismuth only began to be recognised as distinct around 1500 by the European and Incan civilisations. The first elemental metal with a clearly identifiable discoverer is cobalt, discovered in 1735 by Georg Brandt, by which time the Scientific Revolution was in full swing.[6] (Even then, cobalt might have been prepared before the 13th century by alchemists roasting and reducing its ore, but,in any case, its distinct nature was not recognised.)[7]

History

[edit]

Copper was probably the first metal mined and crafted by humans.[8] It was originally obtained as a native metal and later from the smelting of ores. Earliest estimates of the discovery of copper suggest around 9000 BC in the Middle East. It was one of the most important materials to humans throughout the Chalcolithic and Bronze Ages. Copper beads dating from 6000 BC have been found in Çatalhöyük, Anatolia,[9] and the archaeological site of Belovode on the Rudnik mountain in Serbia contains the world's oldest securely dated evidence of copper smelting from 5000 BC.[10][11] It was recognised as an element by Louis Guyton de Morveau, Antoine Lavoisier, Claude Berthollet, and Antoine-François de Fourcroy in 1787.[6]

It is believed that lead smelting began at least 9,000 years ago, and the oldest known artifact of lead is a statuette found at the temple of Osiris on the site of Abydos dated around 3800 BC.[12] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

The earliest gold artifacts were discovered at the site of Wadi Qana in the Levant.[13] Silver is estimated to have been discovered in Asia Minor shortly after copper and gold.[14]

There is evidence that iron was known from before 5000 BC.[15] The oldest known iron objects used by humans are some beads of meteoric iron, made in Egypt in about 4000 BC. The discovery of smelting around 3000 BC led to the start of the Iron Age around 1200 BC[16] and the prominent use of iron for tools and weapons.[17] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

Tin was first smelted in combination with copper around 3500 BC to produce bronze - and thus giving place to the Bronze Age (except in some places which did not experience a significant Bronze Age, passing directly from the Neolithic Stone Age to the Iron Age).[18] Kestel, in southern Turkey, is the site of an ancient Cassiterite mine that was used from 3250 to 1800 BC.[19] The oldest artifacts date from around 2000 BC.[20] It was recognised as an element by Guyton de Morveau, Lavoisier, Berthollet, and Fourcroy in 1787.[6]

Characteristics

[edit]

Melting point

[edit]

The metals of antiquity generally have low melting points, with iron being the exception.

  • Mercury melts at −38.829 °C (−37.89 °F)[21] (being liquid at room temperature).
  • Tin melts at 231 °C (449 °F)[21]
  • Lead melts at 327 °C (621 °F)[21]
  • Silver at 961 °C (1763 °F)[21]
  • Gold at 1064 °C (1947 °F)[21]
  • Copper at 1084 °C (1984 °F)[21]
  • Iron is the outlier at 1538 °C (2800 °F),[21] making it far more difficult to melt in antiquity. Cultures developed ironworking proficiency at different rates; however, evidence from the Near East suggests that smelting was possible but impractical circa 1500 BC, and relatively commonplace across most of Eurasia by 500 BC.[22] However, until this period, generally known as the Iron Age, ironwork would have been impossible.

The other metals discovered before the Scientific Revolution largely fit the pattern, except for high-melting platinum:

  • Bismuth melts at 272 °C (521 °F)[21]
  • Zinc melts at 420 °C (787 °F),[21] but importantly boils at 907 °C (1665 °F), a temperature below the melting point of silver. Consequently, at the temperatures needed to reduce zinc oxide to the metal, the metal is already gaseous.[23][24]
  • Arsenic sublimes at 615 °C (1137 °F), passing directly from the solid state to the gaseous state.[21]
  • Antimony melts at 631 °C (1167 °F)[21]
  • Platinum melts at 1768 °C (3215 °F), even higher than iron.[21] Native South Americans worked with it instead by sintering: they combined gold and platinum powders, until the alloy became soft enough to shape with tools.[25][26]

Extraction

[edit]

While all the metals of antiquity but lead occur natively, only gold and silver are commonly found as the native metal.

  • Gold and silver occur frequently in their native form
  • Mercury compounds are reduced to elemental mercury simply by low-temperature heating (500 °C).
  • Tin and iron occur as oxides and can be reduced with carbon monoxide (produced by, for example, burning charcoal) at 900 °C.
  • Copper and lead compounds can be roasted to produce the oxides, which are then reduced with carbon monoxide at 900 °C.
  • Meteoric iron is often found as the native metal and it was the earliest source for iron objects known to humanity

Symbolism

[edit]

The practice of alchemy in the Western world, based on a Hellenistic and Babylonian approach to planetary astronomy, often ascribed a symbolic association between the seven then-known celestial bodies and the metals known to the Greeks and Babylonians during antiquity. Additionally, some alchemists and astrologers believed there was an association, sometimes called a rulership, between days of the week, the alchemical metals, and the planets that were said to hold "dominion" over them.[27][28] There was some early variation, but the most common associations since antiquity are the following:

Metal Body Symbol Day of week
Gold Sun ☉︎ Sunday
Silver Moon Monday
Iron Mars Tuesday
Mercury Mercury Wednesday
Tin Jupiter Thursday
Copper Venus Friday
Lead Saturn Saturday

See also

[edit]

References

[edit]
  1. ^ Smith, Cyril Stanley; Forbes, R.J. (1957). "2: Metallurgy and Assaying". In Singer; Holmyard; Hall; Williams (eds.). A History Of Technology. Oxford University Press. p. 29.
  2. ^ Moorey, P. R. S. (1994). Ancient Mesopotamian Materials and Industries: the Archaeological Evidence. New York: Clarendon Press. p. 241. ISBN 978-1-57506-042-2.
  3. ^ Healy, John F. (1999). Pliny the Elder on Science and Technology. Oxford University Press. ISBN 9780198146872. Retrieved 26 January 2018.
  4. ^ Holmyard, Eric John (1957). Alchemy. Courier Corporation. ISBN 9780486262987. Retrieved 26 January 2018.
  5. ^ Biswas, Arun Kumar (1993). "The Primacy of India in Ancient Brass and Zinc Metallurgy" (PDF). Indian Journal of History of Science. 28 (4): 309–330. Retrieved 4 January 2024.
  6. ^ a b c d e Miśkowiec, Paweł (2022). "Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century". Foundations of Chemistry. 25: 29–51. doi:10.1007/s10698-022-09448-5.
  7. ^ Weeks, Mary Elvira (1960). Discovery of the Elements (6th ed.). Journal of Chemical Education. p. 153.
  8. ^ "Copper History". Rameria.com. Archived from the original on 2008-09-17. Retrieved 2008-09-12.
  9. ^ "CSA – Discovery Guides, A Brief History of Copper". Archived from the original on 2015-02-03. Retrieved 2008-05-19.
  10. ^ "Serbian site may have hosted first copper makers". UCL.ac.uk. UCL Institute of Archaeology. 23 September 2010. Archived from the original on 28 March 2017. Retrieved 22 April 2017.
  11. ^ Bruce Bower (July 17, 2010). "Serbian site may have hosted first copper makers". ScienceNews. Archived from the original on 8 May 2013. Retrieved 22 April 2017.
  12. ^ "The History of Lead – Part 3". Lead.org.au. Archived from the original on 2004-10-18. Retrieved 2008-09-12.
  13. ^ Gopher, A.; Tsuk, T.; Shalev, S. & Gophna, R. (August–October 1990). "Earliest Gold Artifacts in the Levant". Current Anthropology. 31 (4): 436–443. doi:10.1086/203868. JSTOR 2743275. S2CID 143173212.
  14. ^ "47 Silver".
  15. ^ "26 Iron". Elements.vanderkrogt.net. Retrieved 2008-09-12.
  16. ^ Weeks, Mary Elvira; Leichester, Henry M. (1968). "Elements Known to the Ancients". Discovery of the Elements. Easton, PA: Journal of Chemical Education. pp. 29–40. ISBN 0-7661-3872-0. LCCN 68-15217.
  17. ^ "Notes on the Significance of the First Persian Empire in World History". Courses.wcupa.edu. Retrieved 2008-09-12.
  18. ^ "50 Tin". Elements.vanderkrogt.net. Retrieved 2008-09-12.
  19. ^ Hauptmann, A.; Maddin, R.; Prange, M. (2002), "On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun", Bulletin of the American School of Oriental Research, vol. 328, no. 328, American Schools of Oriental Research, pp. 1–30, JSTOR 1357777
  20. ^ "History of Metals". Neon.mems.cmu.edu. Archived from the original on 2007-01-08. Retrieved 2008-09-12.
  21. ^ a b c d e f g h i j k l Winter, Mark. "The periodic table of the elements by WebElements". www.webelements.com.
  22. ^ Erb-Satullo, Nathaniel L. (December 2019). "The Innovation and Adoption of Iron in the Ancient Near East". Journal of Archaeological Research. 27 (4): 557–607. doi:10.1007/s10814-019-09129-6.
  23. ^ Alam, Ishrat (2020). "The history of zinc and its use in pre-modern India". Studies in People's History. 7 (1): 23–29. doi:10.1177/2348448920908237. Retrieved 4 January 2024.
  24. ^ Li, Yuniu; Xiao, Birui; Juleff, Gill; Huang, Wan; Li, Dadi; Bai, Jiujiang (2020). "Ancient zinc smelting in the Upper and Middle Yangtze River region". Antiquity. 94 (375). doi:10.15184/aqy.2020.83.
  25. ^ Bergsøe, Paul (1936). "Metallurgy of Gold and Platinum among the Pre-Columbian Indians". Nature. 137 (3453). Springer Science and Business Media LLC: 29. Bibcode:1936Natur.137...29B. doi:10.1038/137029a0. ISSN 0028-0836. S2CID 4100269.
  26. ^ Meeks, N.; La Niece, S.; Estevez, P. (2002). "The technology of early platinum plating: a gold mask of the La Tolita culture, Ecuador". Archaeometry. 44 (2). Wiley: 273–284. doi:10.1111/1475-4754.t01-1-00059. ISSN 0003-813X.
  27. ^ Ball, Philip (2007). The Devil's Doctor: Paracelsus and the World of Renaissance Magic and Science. London: Arrow. ISBN 978-0-09-945787-9.
  28. ^ Kollerstrom, Nick. "The Metal-Planet Relationship: A Study of Celestial Influence". homepages.ihug.com.au. Retrieved 3 January 2021.

Further reading

[edit]
  • http://www.webelements.com/ cited from these sources:
    • A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.
    • G.W.C. Kaye and T.H. Laby in Tables of physical and chemical constants, Longman, London, UK, 15th edition, 1993.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy