Jump to content

Morphism of finite type

From Wikipedia, the free encyclopedia

In commutative algebra, given a homomorphism of commutative rings, is called an -algebra of finite type if is a finitely generated as an -algebra. It is much stronger for to be a finite -algebra, which means that is finitely generated as an -module. For example, for any commutative ring and natural number , the polynomial ring is an -algebra of finite type, but it is not a finite -algebra unless = 0 or = 0. Another example of a finite-type homomorphism that is not finite is .

The analogous notion in terms of schemes is: a morphism of schemes is of finite type if has a covering by affine open subschemes such that has a finite covering by affine open subschemes of with an -algebra of finite type. One also says that is of finite type over .

For example, for any natural number and field , affine -space and projective -space over are of finite type over (that is, over ), while they are not finite over unless = 0. More generally, any quasi-projective scheme over is of finite type over .

The Noether normalization lemma says, in geometric terms, that every affine scheme of finite type over a field has a finite surjective morphism to affine space over , where is the dimension of . Likewise, every projective scheme over a field has a finite surjective morphism to projective space , where is the dimension of .

References

[edit]

Bosch, Siegfried (2013). Algebraic Geometry and Commutative Algebra. London: Springer. pp. 360–365. ISBN 9781447148289.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy