Jump to content

Negative pedal curve

From Wikipedia, the free encyclopedia
Circle — negative pedal curve of a limaçon

In geometry, a negative pedal curve is a plane curve that can be constructed from another plane curve C and a fixed point P on that curve. For each point X ≠ P on the curve C, the negative pedal curve has a tangent that passes through X and is perpendicular to line XP. Constructing the negative pedal curve is the inverse operation to constructing a pedal curve.

Definition

[edit]

In the plane, for every point X other than P there is a unique line through X perpendicular to XP. For a given curve in the plane and a given fixed point P, called the pedal point, the negative pedal curve is the envelope of the lines XP for which X lies on the given curve.

Parameterization

[edit]

For a parametrically defined curve, its negative pedal curve with pedal point (0; 0) is defined as

Properties

[edit]

The negative pedal curve of a pedal curve with the same pedal point is the original curve.

See also

[edit]
  • Fish curve, the negative pedal curve of an ellipse with squared eccentricity 1/2
[edit]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy