Jump to content

Order-7-3 triangular honeycomb

From Wikipedia, the free encyclopedia
Order-7-3 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,7,3}
Coxeter diagrams
Cells {3,7}
Faces {3}
Edge figure {3}
Vertex figure {7,3}
Dual Self-dual
Coxeter group [3,7,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb (or 3,7,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,3}.

Geometry

[edit]

It has three order-7 triangular tiling {3,7} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in a heptagonal tiling vertex figure.


Poincaré disk model

Ideal surface

Upper half space model with selective cells shown[1]
[edit]

It a part of a sequence of self-dual regular honeycombs: {p,7,p}.

It is a part of a sequence of regular honeycombs with order-7 triangular tiling cells: {3,7,p}.

It isa part of a sequence of regular honeycombs with heptagonal tiling vertex figures: {p,7,3}.

Order-7-4 triangular honeycomb

[edit]
Order-7-4 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,7,4}
Coxeter diagrams
=
Cells {3,7}
Faces {3}
Edge figure {4}
Vertex figure {7,4}
r{7,7}
Dual {4,7,3}
Coxeter group [3,7,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-4 triangular honeycomb (or 3,7,4 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,4}.

It has four order-7 triangular tilings, {3,7}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-7 triangular tilings existing around each vertex in an order-4 hexagonal tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,71,1}, Coxeter diagram, , with alternating types or colors of order-7 triangular tiling cells. In Coxeter notation the half symmetry is [3,7,4,1+] = [3,71,1].

Order-7-5 triangular honeycomb

[edit]
Order-7-5 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,7,5}
Coxeter diagrams
Cells {3,7}
Faces {3}
Edge figure {5}
Vertex figure {7,5}
Dual {5,7,3}
Coxeter group [3,7,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 triangular honeycomb (or 3,7,5 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,5}. It has five order-7 triangular tiling, {3,7}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-7 triangular tilings existing around each vertex in an order-5 heptagonal tiling vertex figure.


Poincaré disk model

Ideal surface

Order-7-6 triangular honeycomb

[edit]
Order-7-6 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,7,6}
{3,(7,3,7)}
Coxeter diagrams
=
Cells {3,7}
Faces {3}
Edge figure {6}
Vertex figure {7,6}
{(7,3,7)}
Dual {6,7,3}
Coxeter group [3,7,6]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-6 triangular honeycomb (or 3,7,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,6}. It has infinitely many order-7 triangular tiling, {3,7}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-7 triangular tilings existing around each vertex in an order-6 heptagonal tiling, {7,6}, vertex figure.


Poincaré disk model

Ideal surface

Order-7-infinite triangular honeycomb

[edit]
Order-7-infinite triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,7,∞}
{3,(7,∞,7)}
Coxeter diagrams
=
Cells {3,7}
Faces {3}
Edge figure {∞}
Vertex figure {7,∞}
{(7,∞,7)}
Dual {∞,7,3}
Coxeter group [∞,7,3]
[3,((7,∞,7))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-infinite triangular honeycomb (or 3,7,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,7,∞}. It has infinitely many order-7 triangular tiling, {3,7}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-7 triangular tilings existing around each vertex in an infinite-order heptagonal tiling, {7,∞}, vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(7,∞,7)}, Coxeter diagram, = , with alternating types or colors of order-7 triangular tiling cells. In Coxeter notation the half symmetry is [3,7,∞,1+] = [3,((7,∞,7))].

Order-7-3 square honeycomb

[edit]
Order-7-3 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,7,3}
Coxeter diagram
Cells {4,7}
Faces {4}
Vertex figure {7,3}
Dual {3,7,4}
Coxeter group [4,7,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 square honeycomb (or 4,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-7-3 square honeycomb is {4,7,3}, with three order-4 heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is a heptagonal tiling, {7,3}.


Poincaré disk model

Ideal surface

Order-7-3 pentagonal honeycomb

[edit]
Order-7-3 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,7,3}
Coxeter diagram
Cells {5,7}
Faces {5}
Vertex figure {7,3}
Dual {3,7,5}
Coxeter group [5,7,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 pentagonal honeycomb (or 5,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-7 pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-6-3 pentagonal honeycomb is {5,7,3}, with three order-7 pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a heptagonal tiling, {7,3}.


Poincaré disk model

Ideal surface

Order-7-3 hexagonal honeycomb

[edit]
Order-7-3 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbol {6,7,3}
Coxeter diagram
Cells {6,7}
Faces {6}
Vertex figure {7,3}
Dual {3,7,6}
Coxeter group [6,7,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 hexagonal honeycomb (or 6,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-6 hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-7-3 hexagonal honeycomb is {6,7,3}, with three order-5 hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is a heptagonal tiling, {7,3}.


Poincaré disk model

Ideal surface

Order-7-3 apeirogonal honeycomb

[edit]
Order-7-3 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,7,3}
Coxeter diagram
Cells {∞,7}
Faces Apeirogon {∞}
Vertex figure {7,3}
Dual {3,7,∞}
Coxeter group [∞,7,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-3 apeirogonal honeycomb (or ∞,7,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-7 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,7,3}, with three order-7 apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is a heptagonal tiling, {7,3}.

The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.


Poincaré disk model

Ideal surface

Order-7-4 square honeycomb

[edit]
Order-7-4 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,7,4}
Coxeter diagrams
=
Cells {4,7}
Faces {4}
Edge figure {4}
Vertex figure {7,4}
Dual self-dual
Coxeter group [4,7,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-4 square honeycomb (or 4,7,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,7,4}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with four order-5 square tilings existing around each edge and with an order-4 heptagonal tiling vertex figure.


Poincaré disk model

Ideal surface

Order-7-5 pentagonal honeycomb

[edit]
Order-7-5 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,7,5}
Coxeter diagrams
Cells {5,7}
Faces {5}
Edge figure {5}
Vertex figure {7,5}
Dual self-dual
Coxeter group [5,7,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-5 pentagonal honeycomb (or 5,7,5 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,7,5}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with five order-7 pentagonal tilings existing around each edge and with an order-5 heptagonal tiling vertex figure.


Poincaré disk model

Ideal surface

Order-7-6 hexagonal honeycomb

[edit]
Order-7-6 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,7,6}
{6,(7,3,7)}
Coxeter diagrams
=
Cells {6,7}
Faces {6}
Edge figure {6}
Vertex figure {7,6}
{(5,3,5)}
Dual self-dual
Coxeter group [6,7,6]
[6,((7,3,7))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-6 hexagonal honeycomb (or 6,7,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,7,6}. It has six order-7 hexagonal tilings, {6,7}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 heptagonal tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(7,3,7)}, Coxeter diagram, , with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,7,6,1+] = [6,((7,3,7))].

Order-7-infinite apeirogonal honeycomb

[edit]
Order-7-infinite apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbols {∞,7,∞}
{∞,(7,∞,7)}
Coxeter diagrams
Cells {∞,7}
Faces {∞}
Edge figure {∞}
Vertex figure {7,∞}
{(7,∞,7)}
Dual self-dual
Coxeter group [∞,7,∞]
[∞,((7,∞,7))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7-infinite apeirogonal honeycomb (or ∞,7,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,7,∞}. It has infinitely many order-7 apeirogonal tiling {∞,7} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many order-7 apeirogonal tilings existing around each vertex in an infinite-order heptagonal tiling vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(7,∞,7)}, Coxeter diagram, , with alternating types or colors of cells.

See also

[edit]

References

[edit]
  1. ^ Hyperbolic Catacombs Roice Nelson and Henry Segerman, 2014
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)
[edit]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy