Jump to content

Sazonov's theorem

From Wikipedia, the free encyclopedia

In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (Вячесла́в Васи́льевич Сазо́нов), is a theorem in functional analysis.

It states that a bounded linear operator between two Hilbert spaces is γ-radonifying if it is a Hilbert–Schmidt operator. The result is also important in the study of stochastic processes and the Malliavin calculus, since results concerning probability measures on infinite-dimensional spaces are of central importance in these fields. Sazonov's theorem also has a converse: if the map is not Hilbert–Schmidt, then it is not γ-radonifying.

Statement of the theorem

[edit]

Let G and H be two Hilbert spaces and let T : GH be a bounded operator from G to H. Recall that T is said to be γ-radonifying if the push forward of the canonical Gaussian cylinder set measure on G is a bona fide measure on H. Recall also that T is said to be a Hilbert–Schmidt operator if there is an orthonormal basis { ei : iI } of G such that

Then Sazonov's theorem is that T is γ-radonifying if it is a Hilbert–Schmidt operator.

The proof uses Prokhorov's theorem.

Remarks

[edit]

The canonical Gaussian cylinder set measure on an infinite-dimensional Hilbert space can never be a bona fide measure; equivalently, the identity function on such a space cannot be γ-radonifying.

See also

[edit]

References

[edit]
  • Schwartz, Laurent (1973), Radon measures on arbitrary topological spaces and cylindrical measures., Tata Institute of Fundamental Research Studies in Mathematics, London: Oxford University Press, pp. xii+393, MR 0426084
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy