Jump to content

Signal-to-noise statistic

From Wikipedia, the free encyclopedia

In mathematics the signal-to-noise statistic distance between two vectors a and b with mean values and and standard deviation and respectively is:

In the case of Gaussian-distributed data and unbiased class distributions, this statistic can be related to classification accuracy given an ideal linear discrimination, and a decision boundary can be derived.[1]

This distance is frequently used to identify vectors that have significant difference. One usage is in bioinformatics to locate genes that are differential expressed on microarray experiments.[2][3][4]

See also

[edit]

Notes

[edit]
  1. ^ Auffarth, B., Lopez, M., Cerquides, J. (2010). Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images. Advances in Data Mining. Applications and Theoretical Aspects. p. 248--262. Springer.
  2. ^ Golub, T.R. et al. (1999) Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531-537,
  3. ^ Slonim D.K. et al. (2000) Class Prediction and Discovery Using Gene Expression Data. Procs. of the Fourth Annual International Conference on Computational Molecular Biology Tokyo, Japan April 8 - 11, p263-272
  4. ^ Pomeroy, S.L. et al. (2002) Gene Expression-Based Classification and Outcome Prediction of Central Nervous System Embryonal Tumors. Nature 415, 436–442.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy