Jump to content

Spinor spherical harmonics

From Wikipedia, the free encyclopedia

In quantum mechanics, the spinor spherical harmonics[1] (also known as spin spherical harmonics,[2] spinor harmonics[3] and Pauli spinors[4]) are special functions defined over the sphere. The spinor spherical harmonics are the natural spinor analog of the vector spherical harmonics. While the standard spherical harmonics are a basis for the angular momentum operator, the spinor spherical harmonics are a basis for the total angular momentum operator (angular momentum plus spin). These functions are used in analytical solutions to Dirac equation in a radial potential.[3] The spinor spherical harmonics are sometimes called Pauli central field spinors, in honor to Wolfgang Pauli who employed them in the solution of the hydrogen atom with spin–orbit interaction.[1]

Properties

[edit]

The spinor spherical harmonics Yl, s, j, m are the spinors eigenstates of the total angular momentum operator squared:

where j = l + s, where j, l, and s are the (dimensionless) total, orbital and spin angular momentum operators, j is the total azimuthal quantum number and m is the total magnetic quantum number.

Under a parity operation, we have

For spin-1/2 systems, they are given in matrix form by[1][3][5]

where are the usual spherical harmonics.

References

[edit]
  1. ^ a b c Biedenharn, L. C.; Louck, J. D. (1981), Angular momentum in Quantum Physics: Theory and Application, Encyclopedia of Mathematics, vol. 8, Reading: Addison-Wesley, p. 283, ISBN 0-201-13507-8
  2. ^ Edmonds, A. R. (1957), Angular Momentum in Quantum Mechanics, Princeton University Press, ISBN 978-0-691-07912-7
  3. ^ a b c Greiner, Walter (6 December 2012). "9.3 Separation of the Variables for the Dirac Equation with Central Potential (minimally coupled)". Relativistic Quantum Mechanics: Wave Equations. Springer. ISBN 978-3-642-88082-7.
  4. ^ Rose, M. E. (2013-12-20). Elementary Theory of Angular Momentum. Dover Publications, Incorporated. ISBN 978-0-486-78879-1.
  5. ^ Berestetskii, V. B.; E. M. Lifshitz; L. P. Pitaevskii (2008). Quantum electrodynamics. Translated by J. B. Sykes; J. S. Bell (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 978-0-08-050346-2. OCLC 785780331.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy