Jump to content

User:RockDr/sandbox

From Wikipedia, the free encyclopedia

Submarine sediment gravity flows

[edit]
CanyonsbathyLG USGS

On the continental slope, erosion of the ocean floor to create channels and submarine canyons can result from the rapid downslope flow of sediment gravity flows, bodies of sediment-laden water that move rapidly downslope as turbidity currents. Where erosion by turbidity currents creates oversteepened slopes it can also trigger underwater landslides and debris flows. Turbidity currents can erode channels and canyons into substrates ranging from recently deposited unconsolidated sediments to hard crystalline bedrock.[1][2][3] Almost all continental slopes and deep ocean basins display such channels and canyons resulting from sediment gravity flows and submarine canyons act as conduits for the transfer of sediment from the continents and shallow marine environments to the deep sea. [4][5][6] Turbidites, which are the sedimentary deposits resulting from turbidity currents, comprise some of the thickest and largest sedimentary sequences on earth, indicating that the associated erosional processes must also have played a prominent role in earth's history.

Bioerosion

[edit]

Bioerosion


For the sequence stratigraphy page


These are present at a great range of scales and they arise in a number of quite different ways: for example, by fluvial incision and subaerial erosion (above sea level); submergence of nonmarine or shallow-marine sediments during transgression (flooding surfaces and drowning unconformities), in some cases with shoreface erosion (ravinement); shoreface erosion during regression; erosion in the marine environment as a result of storms, currents, or mass-wasting; and through condensation under conditions of diminished sediment supply (intervals of sediment starvation).

The main attribute shared by virtually all of these discontinuities, independent of origin and scale, is that to a first approximation they separate older deposits from younger ones. The recognition of discontinuities is therefore useful because they allow sedimentary successions to be divided into geometrical units that have time-stratigraphic and hence genetic significance."

Types and classification

[edit]

A dozen or so common types of sedimentary basins are widely recognized and understood as distinct kinds of sedimentary basins that formed in particular ways. However, no single overall classification scheme for sedimentary basins is recognized as a standard, although several schemes have been proposed. Most classifications are based on one or more of these interrelated criteria:

  • Plate tectonic setting - the proximity to a plate tectonic boundary and the origin of the tectonically-induced forces that caused a basin to form
  • Nature of underlying crust - basins formed on Continental crust are quite different from those formed on Oceanic crust as the two types of Lithosphere have very different mechanical characteristics (rheology)
  • Geodynamics of basin formation - the mechanical and thermal forces that cause lithosphere to subside and form a basin
  • Petrolem/economic potential - basin characteristics that influence the likelihood that the basin has accumulations of petroleum

[7][8][9][10][11][12][13][14]

Although no one basin classification scheme has been widely adopted, several common types of sedimentary basins are widely accepted and well understood:

Widely-recognized Types of Sedimentary Basins
Sedimentary Basin Type Associated Type of Plate Boundary Description and Formation Illustrated Examples Modern, Active Examples Ancient (No longer active) Examples
Rift basin Divergent Rift basins are elongate sedimentary basins formed in depressions created by tectonically-induced thinning (stretching) of continental crust, generally bounded by normal faults that create grabens and half-grabens.[15][16] Some authors recognize two subtypes:[17]
  • Terrestrial Rift Valleys - largely subaerial valleys that are rifts in continental crust commonly with bimodal volcanism
  • Proto-oceanic rift troughs - incipient ocean basins where new oceanic crust is forming, flanked on either side by young rifted continental margins
Baffin Basin cross section
Gulf of Suez cross section
Death Valley cross section

Terrestrial rift valleys

Proto-oceanic rift troughs

Passive margin Divergent Passive margins generally have deep sedimentary basins that form along the margin of a continent after two continents have completely rifted apart to become separated by an ocean.[21][22] Cooling and densification of the underlying lithosphere over tens of millions of years drives subsidence that allows thick accumulations of sediments eroded from the adjacent content.[23][24][25] Two types are recognized, Non-volcanic passive margins and Volcanic passive margins.
Deposition of Cape Supergroup A5
  • Gulf of Mexico basin
  • Passive margins occur along the entire east coast of North America and South America, the entire coasts of Africa, Australia, Greenland, and the Indian Subcontinent and the margins of the Arctic Ocean.
Foreland Basin Convergent An elongate basin that develops adjacent and parallel to an actively growing mountain belt when the immense mass created by the growing mountains causes the lithosphere to bend downward.[26][27]
Illustration of Himalayan foreland basin
Anadarko Basin Geologic Cross Section
Back-arc basin Convergent Back-arc basins result from stretching and thinning of crust behind volcanic arcs resulting when tensional forces created at the plate boundary pull the overriding plate toward the subducting oceanic plate in a process known as oceanic trench rollback. This only occurs when the subducting oceanic crust is older (>55 million years old), and therefore colder and denser, and being subducted at an angle greater than 30 degrees.[28][29][30]
Banda-arc-cross-section
Forearc basin Convergent

A sedimentary basin formed in association with a convergent plate tectonic boundary in the gap between an active volcanic arc and the associated trench, thus above the subducting oceanic plate. The formation of a forearc basin is often created by the vertical growth of an accretionary prism that acts as a linear dam, parallel to the volcanic arc, creating a depression in which sediments can accumulate. [31][32][33][33]

Sumatra-subduction
Banda-arc-cross-section
Franciscan subduction model
Oceanic trench Convergent

Trench basins are deep linear depressions formed where a subducting oceanic plate descends into the mantle, beneath the overriding continental (Andean type) or oceanic plate (Mariana type). Trenches form in the deep ocean but, particularly where the overriding plate is continental crust they can accumulate thick sequences of sediments from eroding coastal mountains. Smaller 'trench slope basins' can form in association with a trench can form directly atop the associated accretionary prism as it grows and changes shape creating ponded basins.[39][40]

Subduction Trench Schematic
Pull-apart basin Transform

Pull-apart basins is are created along major strike-slip faults where a bend in the fault geometry or the splitting of the fault into two or more faults creates tensional forces that cause crustal thinning or stretching due to extension, creating a regional depression.[43][44][45] Frequently, the basins are rhombic or sigmoidal in shape.[46]

Cross-section of a subduction zone and back-arc basin
Cratonic basin (Intracratonic basin) None

A broad comparatively shallow basin formed far from the edge of a continental craton as a result of prolonged, broadly distributed but slow subsidence of the continental lithosphere relative to the surrounding area. They are commonly filled with shallow water marine or terrestrial sedimentary rocks. The geodynamic forces that create them remain poorly understood.[48][49][50][51][52]

Cross-section of a subduction zone and back-arc basin
  1. ^ Halsey, Thomas C. (15 October 2018). "Erosion of unconsolidated beds by turbidity currents". Physical Review Fluids. 3 (10): 104303. doi:10.1103/PhysRevFluids.3.104303. S2CID 134740576.
  2. ^ Mitchell, Neil C. (October 2014). "Bedrock erosion by sedimentary flows in submarine canyons". Geosphere. 10 (5): 892–904. doi:10.1130/GES01008.1.
  3. ^ Smith, M. Elliot; Werner, Samuel H.; Buscombe, Daniel; Finnegan, Noah J.; Sumner, Esther J.; Mueller, Erich R. (28 November 2018). "Seeking the Shore: Evidence for Active Submarine Canyon Head Incision Due to Coarse Sediment Supply and Focusing of Wave Energy". Geophysical Research Letters. 45 (22): 12, 403–12, 413. doi:10.1029/2018GL080396. S2CID 134823668.
  4. ^ Harris, Peter T. (2020). "Seafloor geomorphology—coast, shelf, and abyss". Seafloor Geomorphology as Benthic Habitat: 115–160. doi:10.1016/B978-0-12-814960-7.00006-3. ISBN 9780128149607.
  5. ^ Bührig, Laura H.; Colombera, Luca; Patacci, Marco; Mountney, Nigel P.; McCaffrey, William D. (October 2022). "A global analysis of controls on submarine-canyon geomorphology". Earth-Science Reviews. 233: 104150. doi:10.1016/j.earscirev.2022.104150. S2CID 251576822.
  6. ^ Seafloor Geomorphology as Benthic Habitat. 2012. doi:10.1016/C2010-0-67010-6. ISBN 9780123851406. S2CID 213281574.
  7. ^ Cite error: The named reference Ingersoll2011 was invoked but never defined (see the help page).
  8. ^ Dickinson, W.R. (1974). "Tectonics and Sedimentation". Semantic Scholar. doi:10.2110/pec.74.22.0001. S2CID 129203900.
  9. ^ Dickinson, William R. (1 September 1976). "Sedimentary basins developed during evolution of Mesozoic–Cenozoic arc–trench system in western North America". Canadian Journal of Earth Sciences. 13 (9): 1268–1287. doi:10.1139/e76-129.
  10. ^ Bally, A.W.; Snelson, S. (1980). "Realms of Subsidence". Facts and Principles of World Petroleum Occurrence — Memoir 6: 9–94.
  11. ^ Cite error: The named reference Klemme 1980 was invoked but never defined (see the help page).
  12. ^ Kingston, D.R.; Dishroon, C.P.; Williams, P.A. (1983). "Global Basin Classification System". AAPG Bulletin. 67 (12): 2175–2193. doi:10.1306/AD460936-16F7-11D7-8645000102C1865D.
  13. ^ Ingersoll, Raymond V. (1988). "Tectonics of sedimentary basins". GSA Bulletin. 100 (11): 1704–1719. doi:10.1130/0016-7606(1988)100<1704:TOSB>2.3.CO;2.
  14. ^ Allen, P. A. (2013). Basin analysis : principles and application to petroleum play assessment (3rd ed.). Chichester, West Susex, UK: Wiley-Blackwell. ISBN 978-0-470-67377-5.
  15. ^ Interior rift basins. Tulsa, Oklahoma: American Association of Petroleum Geologists. 1994. ISBN 9780891813392.
  16. ^ Burke, K.C. (1985). "Rift Basins: Origin, History, and Distribution". Offshore Technology Conference. doi:10.4043/4844-MS.
  17. ^ Cite error: The named reference AllenandAllen was invoked but never defined (see the help page).
  18. ^ Olsen, Kenneth H.; Scott Baldridge, W.; Callender, Jonathan F. (November 1987). "Rio Grande rift: An overview". Tectonophysics. 143 (1–3): 119–139. doi:10.1016/0040-1951(87)90083-7.
  19. ^ Frostick, L.E. (1997). "Chapter 9 The east african rift basins". Sedimentary Basins of the World. 3: 187–209. doi:10.1016/S1874-5997(97)80012-3. ISBN 9780444825711.
  20. ^ Withjack, M. O.; Schlische, R. W.; Malinconico, M. L.; Olsen, P. E. (January 2013). "Rift-basin development: lessons from the Triassic–Jurassic Newark Basin of eastern North America". Geological Society, London, Special Publications. 369 (1): 301–321. doi:10.1144/SP369.13. S2CID 140190041.
  21. ^ Mann, Paul (2015). "Passive Plate Margin". Encyclopedia of Marine Geosciences: 1–8. doi:10.1007/978-94-007-6644-0_100-2. ISBN 978-94-007-6644-0.
  22. ^ Roberts, D.G.; Bally, A.W. (2012). "From rifts to passive margins". Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins: 18–31. doi:10.1016/B978-0-444-56356-9.00001-8. ISBN 9780444563569.
  23. ^ Steckler, M.S.; Watts, A.B. (September 1978). "Subsidence of the Atlantic-type continental margin off New York". Earth and Planetary Science Letters. 41 (1): 1–13. doi:10.1016/0012-821X(78)90036-5.
  24. ^ Barr, D. (September 1992). "Passive continental margin subsidence". Journal of the Geological Society. 149 (5): 803–804. doi:10.1144/gsjgs.149.5.0803. S2CID 129500164.
  25. ^ Bott, M. H. P. (September 1992). "Passive margins and their subsidence". Journal of the Geological Society. 149 (5): 805–812. doi:10.1144/gsjgs.149.5.0805. S2CID 131298655.
  26. ^ Beaumont, C. (1 May 1981). "Foreland basins". Geophysical Journal International. 65 (2): 291–329. doi:10.1111/j.1365-246X.1981.tb02715.x.
  27. ^ DeCelles, Peter G.; Giles, Katherine A. (June 1996). "Foreland basin systems" (PDF). Basin Research. 8 (2): 105–123. doi:10.1046/j.1365-2117.1996.01491.x.
  28. ^ Sdrolias, Maria; Müller, R. Dietmar (April 2006). "Controls on back‐arc basin formation". Geochemistry, Geophysics, Geosystems. 7 (4): 2005GC001090. doi:10.1029/2005GC001090. S2CID 129068818.
  29. ^ Forsyth, D.; Uyeda, S. (1 October 1975). "On the Relative Importance of the Driving Forces of Plate Motion". Geophysical Journal International. 43 (1): 163–200. doi:10.1111/j.1365-246X.1975.tb00631.x.
  30. ^ Nakakuki, Tomoeki; Mura, Erika (January 2013). "Dynamics of slab rollback and induced back-arc basin formation". Earth and Planetary Science Letters. 361: 287–297. doi:10.1016/j.epsl.2012.10.031.
  31. ^ Noda, Atsushi (May 2016). "Forearc basins: Types, geometries, and relationships to subduction zone dynamics". Geological Society of America Bulletin. 128 (5–6): 879–895. doi:10.1130/B31345.1.
  32. ^ Condie, Kent C. (2022). "Tectonic settings". Earth as an Evolving Planetary System: 39–79. doi:10.1016/B978-0-12-819914-5.00002-0. ISBN 9780128199145.
  33. ^ a b Mannu, Utsav; Ueda, Kosuke; Willett, Sean D.; Gerya, Taras V.; Strasser, Michael (June 2017). "Stratigraphic signatures of forearc basin formation mechanisms: STRATIGRAPHY OF FOREARC BASINS". Geochemistry, Geophysics, Geosystems. 18 (6): 2388–2410. doi:10.1002/2017GC006810. S2CID 133772159.
  34. ^ Schlüter, H. U.; Gaedicke, C.; Roeser, H. A.; Schreckenberger, B.; Meyer, H.; Reichert, C.; Djajadihardja, Y.; Prexl, A. (October 2002). "Tectonic features of the southern Sumatra-western Java forearc of Indonesia: TECTONICS OF SOUTHERN SUMATRA". Tectonics. 21 (5): 11–1–11–15. doi:10.1029/2001TC901048. S2CID 129399341.
  35. ^ Edgar A, Mastache-Román; Mario, González-Escobar (17 December 2020). "Forearc Basin: Characteristics of the Subsurface in Magdalena Shelf, Baja California, Mexico, from the Interpretation of Seismic-Reflection Profiles". International Journal of Earth Science and Geophysics. 6 (2). doi:10.35840/2631-5033/1841. S2CID 234492339.
  36. ^ Dash, R. K.; Spence, G. D.; Riedel, M.; Hyndman, R. D.; Brocher, T. M. (August 2007). "Upper-crustal structure beneath the Strait of Georgia, Southwest British Columbia". Geophysical Journal International. 170 (2): 800–812. doi:10.1111/j.1365-246X.2007.03455.x.
  37. ^ Barrie, J. Vaughn; Hill, Philip R. (1 May 2004). "Holocene faulting on a tectonic margin: Georgia Basin, British Columbia, Canada". Geo-Marine Letters. 24 (2): 86–96. doi:10.1007/s00367-003-0166-6. S2CID 140710220.
  38. ^ Orme, Devon A.; Surpless, Kathleen D. (1 August 2019). "The birth of a forearc: The basal Great Valley Group, California, USA". Geology. 47 (8): 757–761. doi:10.1130/G46283.1. S2CID 195814333.
  39. ^ Underwood, Michael B.; Moore, Gregory F. (1995). "Trenches and Trench-Slope Basins". In Busby, C.J., and Ingersoll, R.V., Eds., Tectonics of Sedimentary Basins: 179–219.
  40. ^ Draut, Amy E.; Clift, Peter D. (30 January 2012). "Basins in ARC-Continent Collisions". Tectonics of Sedimentary Basins: 347–368. doi:10.1002/9781444347166.ch17. ISBN 9781444347166.
  41. ^ Ross, David A. (1971). "Sediments of the Northern Middle America Trench". Geological Society of America Bulletin. 82 (2): 303. doi:10.1130/0016-7606(1971)82[303:SOTNMA]2.0.CO;2.
  42. ^ Todd m. Thornburg, Laverne d. Kulm (1987). "Sedimentation in the Chile Trench: Petrofacies and Provenance". SEPM Journal of Sedimentary Research. 57. doi:10.1306/212F8AA3-2B24-11D7-8648000102C1865D.
  43. ^ Gürbüz, Alper (2014). "Pull-Apart Basin". Encyclopedia of Marine Geosciences: 1–8. doi:10.1007/978-94-007-6644-0_116-1. ISBN 978-94-007-6644-0.
  44. ^ Farangitakis, Georgios‐Pavlos; McCaffrey, Ken J. W.; Willingshofer, Ernst; Allen, Mark B.; Kalnins, Lara M.; Hunen, Jeroen; Persaud, Patricia; Sokoutis, Dimitrios (April 2021). "The structural evolution of pull‐apart basins in response to changes in plate motion". Basin Research. 33 (2): 1603–1625. doi:10.1111/bre.12528. S2CID 230608127.
  45. ^ E.Wu, Jonathan; McClay, Ken; Whitehouse, Paul; Dooley, Tim (2012). "4D analogue modelling of transtensional pull-apart basins". Phanerozoic Regional Geology of the World: 700–730. doi:10.1016/B978-0-444-53042-4.00025-X. ISBN 9780444530424.
  46. ^ Gürbüz, Alper (June 2010). "Geometric characteristics of pull-apart basins". Lithosphere. 2 (3): 199–206. doi:10.1130/L36.1.
  47. ^ Ben-Avraham, Z.; Lazar, M.; Garfunkel, Z.; Reshef, M.; Ginzburg, A.; Rotstein, Y.; Frieslander, U.; Bartov, Y.; Shulman, H. (2012). "Structural styles along the Dead Sea Fault". Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps: 616–633. doi:10.1016/B978-0-444-56357-6.00016-0. ISBN 9780444563576.
  48. ^ Cite error: The named reference Selley Sonnenberg was invoked but never defined (see the help page).
  49. ^ Allen, Philip A.; Armitage, John J. (30 January 2012). "Cratonic Basins". Tectonics of Sedimentary Basins: 602–620. doi:10.1002/9781444347166.ch30. ISBN 9781444347166.
  50. ^ Klein, George deV.; Hsui, Albert T. (December 1987). "Origin of cratonic basins". Geology. 15 (12): 1094–1098. doi:10.1130/0091-7613(1987)15<1094:OOCB>2.0.CO;2.
  51. ^ Burgess, Peter M. (2019). "Phanerozoic Evolution of the Sedimentary Cover of the North American Craton". The Sedimentary Basins of the United States and Canada: 39–75. doi:10.1016/B978-0-444-63895-3.00002-4. ISBN 9780444638953. S2CID 149587414.
  52. ^ Middleton, M. F. (December 1989). "A model for the formation of intracratonic sag basins". Geophysical Journal International. 99 (3): 665–676. doi:10.1111/j.1365-246X.1989.tb02049.x. S2CID 129787753.
  53. ^ Lambeck, Kurt (September 1983). "Structure and evolution of the intracratonic basins of central Australia". Geophysical Journal International. 74 (3): 843–886. doi:10.1111/j.1365-246X.1983.tb01907.x.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy