Ugrás a tartalomhoz

Entalpia

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

Az entalpia az állandó nyomáson lejátszódó folyamatok jellemzésére bevezetett – energia dimenziójú – termodinamikai állapotfüggvény (jele H, mértékegysége J),[1] melynek értéke a rendszer belső energiája plusz a rendszer nyomásának és térfogatának szorzata.[2] A tapasztalat szerint egy rendszer energiatartalma hőtranszferrel, valamint munkavégzéssel növelhető vagy csökkenthető (a termodinamika I. főtétele). Mind a fizikai változások, mind pedig a kémiai reakciók során lehetséges a térfogati munka. Az elemi térfogati munka állandó p nyomás esetén:

Ez a térfogati munka jelentős nagyságú, ha egy reakcióban gáz képződik, vagy ha például gáz halmazállapotú rendszerrel közlünk hőt, és elhanyagolhatóan kicsi például a szilárd testek melegítése közben fellépő hőtáguláskor.


Definíció

[szerkesztés]

A termodinamikai rendszer entalpiáját az alábbi képlettel lehet definiálni:

,

ahol

az entalpia,
a rendszer belső energiája,
a nyomás,
a rendszer térfogata.

Végtelen kis változásokra vonatkozóan:

Ha a folyamat állandó nyomáson megy végbe, akkor:


Az entalpia teljes differenciálja

[szerkesztés]

Mivel az entalpia állapotfüggvény, változói pedig az entrópia, a nyomás és az anyagmennyiség, ezért H(S,p,n) és

, ahol n=n1 + n2 ... nK

A teljes differenciálból azonosítható a hőmérsékletnek, a térfogatnak és a kémiai potenciálnak megfelelő parciális derivált, így az egyenlet az alábbiak szerint egyszerűsödik:

Az entalpia hőmérsékletfüggése

[szerkesztés]

Ha egy rendszerrel olyan feltételek között közlünk hőt, hogy a nyomás közben állandó maradjon, akkor ennek a hőnek egy része a rendszer belső energiájának növelésére, a másik része térfogati munka végzésére fordítódik, azaz a rendszer entalpiáját növeli. Gyakorlatban ezt úgy érzékeljük, hogy a rendszer hőmérséklete megnő (ha nincs közben valamilyen izoterm fázisátalakulás). Annak a mértéke, hogy mekkora lesz a hőmérsékletnövekedés, a rendszer hőkapacitásától függ.

A hőkapacitás hőmérsékletfüggése

Az állandó nyomáson mért hőkapacitás definíció összefüggéséből kiindulva,

melynek moláris formája

ha

azaz a kis h moláris entalpiát jelöl.

A rendszer T hőmérsékletre vonatkozó entalpiája a változók szétválasztása után hőmérséklet szerinti integrálással számítható ki.

.

Mint a mellékelt ábra mutatja, T2 és T1 hőmérsékleten a rendszer entalpiájának a különbsége a Cp függvény adott szakasza alatti terület nagyságával arányos.

Standard állapot

[szerkesztés]

Ha T1-nek a 0 K hőmérsékletet választjuk, akkor a Ho – az integrálási állandó – az ún. nullpont-entalpiát jelenti (ami a kvantumelmélet szerint a tapasztalattal megegyezően nem nulla, de nem ismeretes):

.

A gyakorlati számítások céljára To-ként nem az abszolút nulla fokot, hanem az ún. standard hőmérsékletet a 25,0 °C-ot, vagyis a 298,15 K-t választották:

.

Standard entalpia

[szerkesztés]

Az entalpia abszolút értékének a nem ismerete a gyakorlati életben nem okoz problémát, mert nem a tényleges érték, hanem egy-egy folyamatban az entalpia megváltozásának a nagysága a fontos jellemző. Például ha a földgáz elég, akkor az a fontos adat, hogy mekkora az entalpia különbsége az égési folyamat végén az égési folyamat előtti állapothoz képest. Az energiamegmaradás törvénye értelmében ennyi lehet a maximális energia, ami az égés során felszabadulhat, függetlenül attól, hogy kiinduláskor mekkora volt az entalpia tényleges értéke.

Az entalpia abszolút értéke nem ismerhető meg, és gyakorlati értéke sem lenne, de a számítások egységesítése céljából célszerűnek látszott a standard állapot és a standard entalpia definiálása.

A képződési entalpia hőmérsékletfüggése

Standard hőmérsékletként a 25,0 °C-ot, vagyis a 298,15 K-t, standard nyomásként pedig a 105 Pa-t azaz 1 bar-t választották. A definíció szerint standard körülmények között minden referencia állapotú kémiai elem standard entalpiája (standard képződési entalpiája) nulla:

A referenciaállapot a standard nyomáson és hőmérsékleten az adott elem legstabilabb állapotú, legalacsonyabb szabad entalpiájú módosulata (pl. a szénnek több módosulata is stabil standard körülmények között, és csak a grafit módosulat standard képződési entalpiája nulla, a gyémánté nem).

Az energiamegmaradás törvénye és a Hess-törvény figyelembe vételével vegyületek standard képződési entalpiája pedig a képződési reakcióegyenlet ismeretében számítható ki, más hőmérsékletre pedig a hőkapacitás hőmérsékletfüggvényének integrálásával számítható – feltételezve, hogy az anyag összenyomhatatlan:

.

Jegyzetek

[szerkesztés]
  1. 2.4 Az entalpia. In László Krisztina – Grofcsik András – Kállay Mihály – Kubinyi Miklós: Fizikai kémia 1. [Digitális kiadás]. Budapest: Akadémiai. 2017. ISBN 978-963-454-137-0 Hozzáférés: 2020. március 9. doi:10.1556/9789634541370  
  2. IUPAC Gold Book. Enthalpy, H'. (Hozzáférés: 2020. március 8.)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy