Saltu al enhavo

Kontraŭmemadjunkta matrico

El Vikipedio, la libera enciklopedio

En lineara algebro, kontraŭ-memadjunkta matricodeklivo-memadjunkta matrico estas kvadrata matrico A konjugita transpono de kiu A* estas egala al ĝia negativo:

A* = - A

aŭ en komponanto formo, se A = (ai,j), ĉiu elemento estas egala al negativo de kompleksa konjugito de elemento en situo simetria respektive al la ĉefdiagonalo:

por ĉiuj i kaj j.

Ekzemploj

[redakti | redakti fonton]

Ekzemple, jena matrico estas kontraŭmemadjunkta:

Propraĵoj

[redakti | redakti fonton]
  • Ĉiuj ejgenoj de kontraŭmemadjunkta matrico estas pure imaginaraj. Kontraŭmemadjunkta matrico estas normala. De ĉi tie kontraŭmemadjunkta matrico estas diagonaligebla kaj ĝiaj ejgenvektoroj por malsamaj ejgenoj devas esti perpendikulara.
  • Ĉiuj elementoj sur ĉefdiagonalo de kontraŭmemadjunkta matrico estas pure imaginaraj.
  • Se A estas kontraŭmemadjunkta, tiam iA estas memadjunkta matrico.
  • Se A, B estas kontraŭmemadjunktaj, tiam aA + bB estas kontraŭmemadjunkta por ĉiuj reelaj nombroj a, b.
  • Se A estas kontraŭmemadjunkta, tiam A2k estas Hermita por ĉiuj pozitivaj entjeroj k.
  • Se A estas kontraŭmemadjunkta, tiam ĝia potenco An kun nepara n estas kontraŭmemadjunkta.
  • Se A estas kontraŭmemadjunkta, tiam ĝia eksponento eA estas unita matrico.
  • Por ĉiu kvadrata matrico C, la diferenco de ĝi kaj ĝia konjugita transpono C - C* estas kontraŭmemadjunkta.
  • Ĉiu kvadrata matrico C povas esti skribita kiel sumo de memadjunkta matrico A kaj kontraŭmemadjunkta matrico B:

Vidu ankaŭ

[redakti | redakti fonton]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy