Ir al contenido

Hipotrocoide

De Wikipedia, la enciclopedia libre

Una hipotrocoide, en geometría, es la curva plana que describe un punto vinculado a una circunferencia generatriz que rueda dentro de una circunferencia directriz, tangencialmente, sin deslizamiento.

La palabra se compone de las raíces griegas hipo hupo (abajo) y trokos (rueda).

Estas curvas fueron estudiadas por Albrecht Dürer en 1525, Ole Christensen Rømer en 1674 y Bernoulli en 1725.

Ecuaciones

[editar]

Siendo (donde ) y , con circunferencia directriz de radio a, y circunferencia generatriz de radio a, y la distancia al centro de la generatriz d, la ecuación de la hipotrocoide es:

pero x no es igual a A

donde:

Por identificación de las partes reales e imaginarias se obtiene:

donde:

y .

Sabiendo que , y , obtenemos las ecuaciones siguientes:

el ángulo varía de 0 a 2π.

Las elipses son casos particulares de hipotrocoide, donde .

Las hipocicloides son casos particulares, donde (el punto fijo de la generatriz)

Hipotrocoide alargada (en trazo rojo), circunferencia directriz (en trazo azul), circunferencia generatriz (en trazo negro). Parámetros: R = 3, r = 1, d = 1,5).
Hipotrocoide acortada (en trazo rojo), circunferencia directriz (en trazo azul), circunferencia generatriz (en trazo negro). Parámetros: R = 3, r = 1, d = 0,5.

Aplicaciones

[editar]
  • Los espirografos (son juguetes para dibujar) crean hipotrocoides.
  • Las hipotrocoides definen el soporte de los autovalores de matrices aleatorias con correlaciones cíclicas.[1]

Curvas cíclicas

[editar]

Curva cíclica

La directriz es una recta
d = r d < r d > r
cicloide trocoide
cicloide normal cicloide acortada cicloide alargada
La directriz es una circunferencia
d = r d < r d > r
La generatriz es exterior a al directriz epicicloide epitrocoide
epicicloide normal epicicloide acortada epicicloide alargada
La generatriz es interior a al directriz hipocicloide hipotrocoide
hipocicloide normal hipocicloide acortada hipocicloide alargada
La directriz es interior a al generatriz pericicloide peritrocoide
pericicloide normal pericicloide acortada pericicloide alargada

Véase también

[editar]

Referencias

[editar]
  1. Aceituno, Pau Vilimelis; Rogers, Tim; Schomerus, Henning (16 de julio de 2019). «Universal hypotrochoidic law for random matrices with cyclic correlations». Physical Review E 100 (1): 010302. doi:10.1103/PhysRevE.100.010302. Consultado el 4 de octubre de 2020. 

Enlaces externos

[editar]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy