Aller au contenu

Daniel Wise

Un article de Wikipédia, l'encyclopédie libre.
Daniel Wise
Description de cette image, également commentée ci-après
Daniel Wise en 2018

Naissance (53 ans)
Nationalité Drapeau des États-Unis États-Unis
Domaines Mathématiques, théorie géométrique des groupes
Institutions Université McGill
Diplôme Université de Princeton
Directeur de thèse Martin Bridson
Distinctions prix Oswald Veblen (2013) ; Prix CRM-Fields-PIMS (2016)

Daniel T. Wise est un mathématicien américain né le . Son domaine de recherche est la théorie géométrique des groupes et la topologie des variétés de dimension 3.

Il obtient son doctorat à l'université de Princeton en 1996 avec une thèse intitulée Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, dirigée par Martin Bridson. Il est professeur de mathématiques à l'université McGill [1].

Les complexes cubiques à courbure négative, leur rôle dans la théorie géométrique des groupes et leur lien avec les propriétés résiduelles des groupes sont depuis sa thèse au centre du travail de recherche de Wise. Ses premiers travaux portaient essentiellement sur des groupes associés à des complexes carrés. En commun avec Frédéric Haglund, il est parvenu à dégager les propriétés essentielles des complexes carrés qui faisaient l'objet de ses premiers travaux. Cela les a conduit à développer une théorie analogue en toute dimension : la théorie des complexes cubiques spéciaux[2].

En 2009, il annonce la solution de la conjecture de fibration virtuelle pour les variétés hyperboliques de dimension 3 non compacte de volume fini[3]. Il obtient ce résultat comme conséquence d'un travail plus vaste sur la structure des groupes admettant une hiérarchie quasi-convexe[4]. Dans ce travail, il démontre que pour une large classe de groupes hyperboliques, tout groupe dans cette classe contient un sous-groupe d'indice fini qui est le groupe fondamental d'un complexe cubique spécial. Wise développe plus généralement un programme visant à utiliser les complexes cubiques pour comprendre de nombreux groupes infinis. Ce programme joue un rôle déterminant dans la démonstration par Ian Agol de la conjecture virtuellement Haken.

Prix et distinctions

[modifier | modifier le code]
Daniel Wise à Oberwolfach en 2013

Daniel Wise reçoit en 2013 avec Ian Agol le prix Oswald Veblen en géométrie[5] pour leur théorie des complexes cubiques spéciaux et pour avoir démontré la séparabilité des sous-groupes d'une large classe de groupes (for the theory of special cube complexes and his establishment of subgroup separability for a wide class of groups).

En 2014, il est conférencier invité au Congrès international des mathématiciens à Séoul. En 2016 il est lauréat du prix CRM-Fields-PIMS. En 2022 il reçoit avec Piotr Przytycki le prix Moore de l'American Mathematical Society, pour l'article « Mixed 3-manifolds are virtually special » [6].

Sélection de travaux

[modifier | modifier le code]

Références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Daniel Wise (mathematician) » (voir la liste des auteurs).
  1. Daniel Wise, « Home Page », sur mcgill.ca (consulté le ).
  2. (en) Daniel T. Wise, « Special Cube Complexes », Geometric and Functional Analysis, Springer, vol. 17, no 5,‎ , p. 1551–1620 (ISSN 1420-8970, DOI 10.1007/s00039-007-0629-4, lire en ligne, consulté le ).
  3. « aimsciences.org/journals/pdfs.… »(Archive.orgWikiwixArchive.isGoogleQue faire ?).
  4. The Structure of Groups with a Quasiconvex Hierarchy
  5. http://www.ams.org/profession/prizebooklet-2013.pdf
  6. « Mixed 3-manifolds are virtually special », publié dans le Journal of the American Mathematical Society (Vol. 31, No. 2, 2018, pp. 319-347).

Liens externes

[modifier | modifier le code]

Sur les autres projets Wikimedia :

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy