Skip to content

Ahmednull/L2CS-Net

Repository files navigation

animated


L2CS-Net

The official PyTorch implementation of L2CS-Net for gaze estimation and tracking.

Installation

Install package with the following:

pip install git+https://github.com/edavalosanaya/L2CS-Net.git@main

Or, you can git clone the repo and install with the following:

pip install [-e] .

Now you should be able to import the package with the following command:

$ python
>>> import l2cs

Usage

Detect face and predict gaze from webcam

from l2cs import Pipeline, render
import cv2

gaze_pipeline = Pipeline(
    weights=CWD / 'models' / 'L2CSNet_gaze360.pkl',
    arch='ResNet50',
    device=torch.device('cpu') # or 'gpu'
)
 
cap = cv2.VideoCapture(cam)
_, frame = cap.read()    

# Process frame and visualize
results = gaze_pipeline.step(frame)
frame = render(frame, results)

Demo

  • Download the pre-trained models from here and Store it to models/.
  • Run:
 python demo.py \
 --snapshot models/L2CSNet_gaze360.pkl \
 --gpu 0 \
 --cam 0 \

This means the demo will run using L2CSNet_gaze360.pkl pretrained model

Community Contributions

MPIIGaze

We provide the code for train and test MPIIGaze dataset with leave-one-person-out evaluation.

Prepare datasets

  • Download MPIIFaceGaze dataset from here.
  • Apply data preprocessing from here.
  • Store the dataset to datasets/MPIIFaceGaze.

Train

 python train.py \
 --dataset mpiigaze \
 --snapshot output/snapshots \
 --gpu 0 \
 --num_epochs 50 \
 --batch_size 16 \
 --lr 0.00001 \
 --alpha 1 \

This means the code will perform leave-one-person-out training automatically and store the models to output/snapshots.

Test

 python test.py \
 --dataset mpiigaze \
 --snapshot output/snapshots/snapshot_folder \
 --evalpath evaluation/L2CS-mpiigaze  \
 --gpu 0 \

This means the code will perform leave-one-person-out testing automatically and store the results to evaluation/L2CS-mpiigaze.

To get the average leave-one-person-out accuracy use:

 python leave_one_out_eval.py \
 --evalpath evaluation/L2CS-mpiigaze  \
 --respath evaluation/L2CS-mpiigaze  \

This means the code will take the evaluation path and outputs the leave-one-out gaze accuracy to the evaluation/L2CS-mpiigaze.

Gaze360

We provide the code for train and test Gaze360 dataset with train-val-test evaluation.

Prepare datasets

  • Download Gaze360 dataset from here.

  • Apply data preprocessing from here.

  • Store the dataset to datasets/Gaze360.

Train

 python train.py \
 --dataset gaze360 \
 --snapshot output/snapshots \
 --gpu 0 \
 --num_epochs 50 \
 --batch_size 16 \
 --lr 0.00001 \
 --alpha 1 \

This means the code will perform training and store the models to output/snapshots.

Test

 python test.py \
 --dataset gaze360 \
 --snapshot output/snapshots/snapshot_folder \
 --evalpath evaluation/L2CS-gaze360  \
 --gpu 0 \

This means the code will perform testing on snapshot_folder and store the results to evaluation/L2CS-gaze360.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy