Skip to content

Add Longest Subarray With Sum Less Than or Equal to K algorithm and t… #6042

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Oct 27, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
again updated
  • Loading branch information
Chiefpatwal committed Oct 27, 2024
commit 0e15f08ffe3f2b70422b7232c2a353217558dbea
243 changes: 203 additions & 40 deletions src/main/java/com/thealgorithms/datastructures/trees/BinaryTree.java
Original file line number Diff line number Diff line change
Expand Up @@ -3,60 +3,117 @@
import java.util.LinkedList;
import java.util.Queue;

/*
* This entire class is used to build a Binary Tree data structure. There is the
* Node Class and the Tree Class, both explained below.
*/
/**
* A binary tree data structure where elements have two successors (children).
* The left child is smaller than the parent, and the right child is larger.
* A binary tree is a data structure in which an element has two
* successors(children). The left child is usually smaller than the parent, and
* the right child is usually bigger.
*
* @author Unknown
*/
public class BinaryTree {

/**
* Node class represents elements in the Binary Tree, with pointers to
* the left and right children and a reference to its parent node.
* This class implements the nodes that will go on the Binary Tree. They
* consist of the data in them, the node to the left, the node to the right,
* and the parent from which they came from.
*
* @author Unknown
*/
static class Node {

/**
* Data for the node
*/
public int data;
public Node left, right, parent;
/**
* The Node to the left of this one
*/
public Node left;
/**
* The Node to the right of this one
*/
public Node right;
/**
* The parent of this node
*/
public Node parent;

public Node(int value) {
/**
* Constructor of Node
*
* @param value Value to put in the node
*/
Node(int value) {
data = value;
left = right = parent = null;
left = null;
right = null;
parent = null;
}
}

/**
* The root of the Binary Tree
*/
private Node root;

/**
* Constructor
*/
public BinaryTree() {
root = null;
}

/**
* Parameterized Constructor
*/
public BinaryTree(Node root) {
this.root = root;
}

/**
* Method to find a Node with a certain value
*
* @param key Value being looked for
* @return The node if it finds it, otherwise returns the parent
*/
public Node find(int key) {
Node current = root;
while (current != null) {
if (key < current.data) {
if (current.left == null) return current;
if (current.left == null) {
return current; // The key isn't exist, returns the parent
}
current = current.left;
} else if (key > current.data) {
if (current.right == null) return current;
if (current.right == null) {
return current;
}
current = current.right;
} else {
} else { // If you find the value return it
return current;
}
}
return null;
}

/**
* Inserts certain value into the Binary Tree
*
* @param value Value to be inserted
*/
public void put(int value) {
Node newNode = new Node(value);
if (root == null) {
root = newNode;
} else {
// This will return the soon to be parent of the value you're inserting
Node parent = find(value);

// This if/else assigns the new node to be either the left or right child of the parent
if (value < parent.data) {
parent.left = newNode;
parent.left.parent = parent;
Expand All @@ -67,68 +124,141 @@ public void put(int value) {
}
}

/**
* Deletes a given value from the Binary Tree
*
* @param value Value to be deleted
* @return If the value was deleted
*/
public boolean remove(int value) {
// temp is the node to be deleted
Node temp = find(value);
if (temp == null || temp.data != value) return false;

if (temp.left == null && temp.right == null) {
if (temp == root)
// If the value doesn't exist
if (temp.data != value) {
return false;
}

// No children
if (temp.right == null && temp.left == null) {
if (temp == root) {
root = null;
else if (temp.parent.data < temp.data)
} // This if/else assigns the new node to be either the left or right child of the
// parent
else if (temp.parent.data < temp.data) {
temp.parent.right = null;
else
} else {
temp.parent.left = null;
}
return true;
} else if (temp.left != null && temp.right != null) {
} // Two children
else if (temp.left != null && temp.right != null) {
Node successor = findSuccessor(temp);

// The left tree of temp is made the left tree of the successor
successor.left = temp.left;
successor.left.parent = successor;

// If the successor has a right child, the child's grandparent is it's new parent
if (successor.parent != temp) {
if (successor.right != null) {
successor.right.parent = successor.parent;
successor.parent.left = successor.right;
} else
} else {
successor.parent.left = null;
}
successor.right = temp.right;
successor.right.parent = successor;
}

if (temp == root) {
root = successor;
successor.parent = null;
} else {
root = successor;
} // If you're not deleting the root
else {
successor.parent = temp.parent;
if (temp.parent.data < temp.data)

// This if/else assigns the new node to be either the left or right child of the
// parent
if (temp.parent.data < temp.data) {
temp.parent.right = successor;
else
} else {
temp.parent.left = successor;
}
}
return true;
} else {
Node child = (temp.right != null) ? temp.right : temp.left;
if (temp == root)
root = child;
} // One child
else {
// If it has a right child
if (temp.right != null) {
if (temp == root) {
root = temp.right;
return true;
}

temp.right.parent = temp.parent;

// Assigns temp to left or right child
if (temp.data < temp.parent.data) {
temp.parent.left = temp.right;
} else {
temp.parent.right = temp.right;
}
} // If it has a left child
else {
child.parent = temp.parent;
if (temp.data < temp.parent.data)
temp.parent.left = child;
else
temp.parent.right = child;
if (temp == root) {
root = temp.left;
return true;
}

temp.left.parent = temp.parent;

// Assigns temp to left or right side
if (temp.data < temp.parent.data) {
temp.parent.left = temp.left;
} else {
temp.parent.right = temp.left;
}
}
return true;
}
}

/**
* This method finds the Successor to the Node given. Move right once and go
* left down the tree as far as you can
*
* @param n Node that you want to find the Successor of
* @return The Successor of the node
*/
public Node findSuccessor(Node n) {
if (n.right == null) return n;
if (n.right == null) {
return n;
}
Node current = n.right;
while (current.left != null) current = current.left;
return current;
Node parent = n.right;
while (current != null) {
parent = current;
current = current.left;
}
return parent;
}

/**
* Returns the root of the Binary Tree
*
* @return the root of the Binary Tree
*/
public Node getRoot() {
return root;
}

/**
* Prints leftChild - root - rightChild This is the equivalent of a depth
* first search
*
* @param localRoot The local root of the binary tree
*/
public void inOrder(Node localRoot) {
if (localRoot != null) {
inOrder(localRoot.left);
Expand All @@ -137,6 +267,11 @@ public void inOrder(Node localRoot) {
}
}

/**
* Prints root - leftChild - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void preOrder(Node localRoot) {
if (localRoot != null) {
System.out.print(localRoot.data + " ");
Expand All @@ -145,6 +280,11 @@ public void preOrder(Node localRoot) {
}
}

/**
* Prints leftChild - rightChild - root
*
* @param localRoot The local root of the binary tree
*/
public void postOrder(Node localRoot) {
if (localRoot != null) {
postOrder(localRoot.left);
Expand All @@ -153,15 +293,38 @@ public void postOrder(Node localRoot) {
}
}

/**
* Prints the tree in a breadth first search order This is similar to
* pre-order traversal, but instead of being implemented with a stack (or
* recursion), it is implemented with a queue
*
* @param localRoot The local root of the binary tree
*/
public void bfs(Node localRoot) {
if (localRoot == null) return;
// Create a queue for the order of the nodes
Queue<Node> queue = new LinkedList<>();
queue.add(localRoot);

// If the give root is null, then we don't add to the queue
// and won't do anything
if (localRoot != null) {
queue.add(localRoot);
}

// Continue until the queue is empty
while (!queue.isEmpty()) {
Node node = queue.remove();
System.out.print(node.data + " ");
if (node.left != null) queue.add(node.left);
if (node.right != null) queue.add(node.right);
// Get the next node on the queue to visit
localRoot = queue.remove();

// Print the data from the node we are visiting
System.out.print(localRoot.data + " ");

// Add the children to the queue if not null
if (localRoot.right != null) {
queue.add(localRoot.right);
}
if (localRoot.left != null) {
queue.add(localRoot.left);
}
}
}
}
}
Loading
Loading
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy