Skip to content

Planning implementations - 11.1 and 11.5 #505

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 17, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
312 changes: 311 additions & 1 deletion planning.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@
"""

import itertools
from utils import Expr, expr, first
from search import Node
from utils import Expr, expr, first, FIFOQueue
from logic import FolKB


Expand Down Expand Up @@ -574,3 +575,312 @@ def goal_test(kb):
go = Action(expr("Go(actor, to)"), [precond_pos, precond_neg], [effect_add, effect_rem])

return PDDL(init, [hit, go], goal_test)


class HLA(Action):
"""
Define Actions for the real-world (that may be refined further), and satisfy resource
constraints.
"""
unique_group = 1

def __init__(self, action, precond=[None, None], effect=[None, None], duration=0,
consume={}, use={}):
"""
As opposed to actions, to define HLA, we have added constraints.
duration holds the amount of time required to execute the task
consumes holds a dictionary representing the resources the task consumes
uses holds a dictionary representing the resources the task uses
"""
super().__init__(action, precond, effect)
self.duration = duration
self.consumes = consume
self.uses = use
self.completed = False
# self.priority = -1 # must be assigned in relation to other HLAs
# self.job_group = -1 # must be assigned in relation to other HLAs

def do_action(self, job_order, available_resources, kb, args):
"""
An HLA based version of act - along with knowledge base updation, it handles
resource checks, and ensures the actions are executed in the correct order.
"""
# print(self.name)
if not self.has_usable_resource(available_resources):
raise Exception('Not enough usable resources to execute {}'.format(self.name))
if not self.has_consumable_resource(available_resources):
raise Exception('Not enough consumable resources to execute {}'.format(self.name))
if not self.inorder(job_order):
raise Exception("Can't execute {} - execute prerequisite actions first".
format(self.name))
super().act(kb, args) # update knowledge base
for resource in self.consumes: # remove consumed resources
available_resources[resource] -= self.consumes[resource]
self.completed = True # set the task status to complete

def has_consumable_resource(self, available_resources):
"""
Ensure there are enough consumable resources for this action to execute.
"""
for resource in self.consumes:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.consumes[resource]:
return False
return True

def has_usable_resource(self, available_resources):
"""
Ensure there are enough usable resources for this action to execute.
"""
for resource in self.uses:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.uses[resource]:
return False
return True

def inorder(self, job_order):
"""
Ensure that all the jobs that had to be executed before the current one have been
successfully executed.
"""
for jobs in job_order:
if self in jobs:
for job in jobs:
if job is self:
return True
if not job.completed:
return False
return True


class Problem(PDDL):
"""
Define real-world problems by aggregating resources as numerical quantities instead of
named entities.

This class is identical to PDLL, except that it overloads the act function to handle
resource and ordering conditions imposed by HLA as opposed to Action.
"""
def __init__(self, initial_state, actions, goal_test, jobs=None, resources={}):
super().__init__(initial_state, actions, goal_test)
self.jobs = jobs
self.resources = resources

def act(self, action):
"""
Performs the HLA given as argument.

Note that this is different from the superclass action - where the parameter was an
Expression. For real world problems, an Expr object isn't enough to capture all the
detail required for executing the action - resources, preconditions, etc need to be
checked for too.
"""
args = action.args
list_action = first(a for a in self.actions if a.name == action.name)
if list_action is None:
raise Exception("Action '{}' not found".format(action.name))
list_action.do_action(self.jobs, self.resources, self.kb, args)
# print(self.resources)

def refinements(hla, state, library): # TODO - refinements may be (multiple) HLA themselves ...
"""
state is a Problem, containing the current state kb
library is a dictionary containing details for every possible refinement. eg:
{
"HLA": [
"Go(Home,SFO)",
"Go(Home,SFO)",
"Drive(Home, SFOLongTermParking)",
"Shuttle(SFOLongTermParking, SFO)",
"Taxi(Home, SFO)"
],
"steps": [
["Drive(Home, SFOLongTermParking)", "Shuttle(SFOLongTermParking, SFO)"],
["Taxi(Home, SFO)"],
[], # empty refinements ie primitive action
[],
[]
],
"precond_pos": [
["At(Home), Have(Car)"],
["At(Home)"],
["At(Home)", "Have(Car)"]
["At(SFOLongTermParking)"]
["At(Home)"]
],
"precond_neg": [[],[],[],[],[]],
"effect_pos": [
["At(SFO)"],
["At(SFO)"],
["At(SFOLongTermParking)"],
["At(SFO)"],
["At(SFO)"]
],
"effect_neg": [
["At(Home)"],
["At(Home)"],
["At(Home)"],
["At(SFOLongTermParking)"],
["At(Home)"]
]
}
"""
e = Expr(hla.name, hla.args)
indices = [i for i,x in enumerate(library["HLA"]) if expr(x).op == hla.name]
for i in indices:
action = HLA(expr(library["steps"][i][0]), [ # TODO multiple refinements
[expr(x) for x in library["precond_pos"][i]],
[expr(x) for x in library["precond_neg"][i]]
],
[
[expr(x) for x in library["effect_pos"][i]],
[expr(x) for x in library["effect_neg"][i]]
])
if action.check_precond(state.kb, action.args):
yield action

def hierarchical_search(problem, hierarchy):
"""
[Figure 11.5] 'Hierarchical Search, a Breadth First Search implementation of Hierarchical
Forward Planning Search'

The problem is a real-world prodlem defined by the problem class, and the hierarchy is
a dictionary of HLA - refinements (see refinements generator for details)
"""
act = Node(problem.actions[0])
frontier = FIFOQueue()
frontier.append(act)
while(True):
if not frontier: #(len(frontier)==0):
return None
plan = frontier.pop()
print(plan.state.name)
hla = plan.state #first_or_null(plan)
prefix = None
if plan.parent:
prefix = plan.parent.state.action #prefix, suffix = subseq(plan.state, hla)
outcome = Problem.result(problem, prefix)
if hla is None:
if outcome.goal_test():
return plan.path()
else:
print("else")
for sequence in Problem.refinements(hla, outcome, hierarchy):
print("...")
frontier.append(Node(plan.state, plan.parent, sequence))

def result(problem, action):
"""The outcome of applying an action to the current problem"""
if action is not None:
problem.act(action)
return problem
else:
return problem


def job_shop_problem():
"""
[figure 11.1] JOB-SHOP-PROBLEM

A job-shop scheduling problem for assembling two cars,
with resource and ordering constraints.

Example:
>>> from planning import *
>>> p = job_shop_problem()
>>> p.goal_test()
False
>>> p.act(p.jobs[1][0])
>>> p.act(p.jobs[1][1])
>>> p.act(p.jobs[1][2])
>>> p.act(p.jobs[0][0])
>>> p.act(p.jobs[0][1])
>>> p.goal_test()
False
>>> p.act(p.jobs[0][2])
>>> p.goal_test()
True
>>>
"""
init = [expr('Car(C1)'),
expr('Car(C2)'),
expr('Wheels(W1)'),
expr('Wheels(W2)'),
expr('Engine(E2)'),
expr('Engine(E2)')]

def goal_test(kb):
# print(kb.clauses)
required = [expr('Has(C1, W1)'), expr('Has(C1, E1)'), expr('Inspected(C1)'),
expr('Has(C2, W2)'), expr('Has(C2, E2)'), expr('Inspected(C2)')]
for q in required:
# print(q)
# print(kb.ask(q))
if kb.ask(q) is False:
return False
return True

resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}

# AddEngine1
precond_pos = []
precond_neg = [expr("Has(C1,E1)")]
effect_add = [expr("Has(C1,E1)")]
effect_rem = []
add_engine1 = HLA(expr("AddEngine1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, use={'EngineHoists': 1})

# AddEngine2
precond_pos = []
precond_neg = [expr("Has(C2,E2)")]
effect_add = [expr("Has(C2,E2)")]
effect_rem = []
add_engine2 = HLA(expr("AddEngine2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=60, use={'EngineHoists': 1})

# AddWheels1
precond_pos = []
precond_neg = [expr("Has(C1,W1)")]
effect_add = [expr("Has(C1,W1)")]
effect_rem = []
add_wheels1 = HLA(expr("AddWheels1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, consume={'LugNuts': 20}, use={'WheelStations': 1})

# AddWheels2
precond_pos = []
precond_neg = [expr("Has(C2,W2)")]
effect_add = [expr("Has(C2,W2)")]
effect_rem = []
add_wheels2 = HLA(expr("AddWheels2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=15, consume={'LugNuts': 20}, use={'WheelStations': 1})

# Inspect1
precond_pos = []
precond_neg = [expr("Inspected(C1)")]
effect_add = [expr("Inspected(C1)")]
effect_rem = []
inspect1 = HLA(expr("Inspect1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})

# Inspect2
precond_pos = []
precond_neg = [expr("Inspected(C2)")]
effect_add = [expr("Inspected(C2)")]
effect_rem = []
inspect2 = HLA(expr("Inspect2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})

job_group1 = [add_engine1, add_wheels1, inspect1]
job_group2 = [add_engine2, add_wheels2, inspect2]

return Problem(init, [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2],
goal_test, [job_group1, job_group2], resources)

48 changes: 48 additions & 0 deletions tests/test_planning.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,51 @@ def test_graph_call():
graph()

assert levels_size == len(graph.levels) - 1


def test_job_shop_problem():
p = job_shop_problem()
assert p.goal_test() is False

solution = [p.jobs[1][0],
p.jobs[0][0],
p.jobs[0][1],
p.jobs[0][2],
p.jobs[1][1],
p.jobs[1][2]]

for action in solution:
p.act(action)

assert p.goal_test()

def test_refinements() :
init = [expr('At(Home)')]
def goal_test(kb):
return kb.ask(expr('At(SFO)'))

library = {"HLA": ["Go(Home,SFO)","Taxi(Home, SFO)"],
"steps": [["Taxi(Home, SFO)"],[]],
"precond_pos": [["At(Home)"],["At(Home)"]],
"precond_neg": [[],[]],
"effect_pos": [["At(SFO)"],["At(SFO)"]],
"effect_neg": [["At(Home)"],["At(Home)"],]}
# Go SFO
precond_pos = [expr("At(Home)")]
precond_neg = []
effect_add = [expr("At(SFO)")]
effect_rem = [expr("At(Home)")]
go_SFO = HLA(expr("Go(Home,SFO)"),
[precond_pos, precond_neg], [effect_add, effect_rem])
# Taxi SFO
precond_pos = [expr("At(Home)")]
precond_neg = []
effect_add = [expr("At(SFO)")]
effect_rem = [expr("At(Home)")]
taxi_SFO = HLA(expr("Go(Home,SFO)"),
[precond_pos, precond_neg], [effect_add, effect_rem])
prob = Problem(init, [go_SFO, taxi_SFO], goal_test)
result = [i for i in Problem.refinements(go_SFO, prob, library)]
assert(len(result) == 1)
assert(result[0].name == "Taxi")
assert(result[0].args == (expr("Home"), expr("SFO")))
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy