Skip to content

avsrma/Eye-Gaze-Estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Eye-gaze estimation in PyTorch

Docker

Pull the image from Docker Hub. It contains all the required packages.

docker pull kroniidvul/pytorch_mpiigaze:latest

Run the container interactively.

docker run -it --rm kroniidvul/pytorch_mpiigaze /bin/bash

Download the dataset and preprocess it

$ wget http://datasets.d2.mpi-inf.mpg.de/MPIIGaze/MPIIGaze.tar.gz
$ tar xzvf MPIIGaze.tar.gz

$ python preprocess_data.py --dataset MPIIGaze --outdir data

Usage

$ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/00
$ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/lenet/00 --batch_size 32 --base_lr 0.01 --momentum 0.9 --nesterov True --weight_decay 1e-4 --epochs 40 --milestones '[30, 35]' --lr_decay 0.1 

Project

This work explores various parameters, lr schedulers, deep neural architectures, ensembling, and a mask-based approach of using upsampled gaze vectors for appearance based gaze estimation on the MPIIGaze dataset.

Results

References

  • https://github.com/hysts/pytorch_mpiigaze Original Git repo
  • Xucong Zhang and Yusuke Sugano and Mario Fritz and Bulling, Andreas, "Appearance-based Gaze Estimation in the Wild," Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015 arXiv:1504.02863, Project Page
  • Xucong Zhang and Yusuke Sugano and Mario Fritz and Bulling, Andreas, "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation," arXiv:1711.09017

About

Eye-Gaze Estimation using multi-model CNN.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy