Skip to content

spatial math types

Peter Corke edited this page Feb 27, 2023 · 1 revision

The module base/types.py defines a set of types for different arrays. These are all ndarray but giving them more meaningful types is helpful when writing code. The defined types are:

1D arrays for input to functions

  • ArrayLikePure array like of arbitrary length, eg. `np.r_[1, 2, 3], [1], (1, 2, 3, 4)
  • ArrayLike array like of arbitrary length including scalar, eg. 2, np.r_[2], [2], (2,)
  • ArrayLike2 array like of length 2, eg. np.r_[1, 2], [1, 2], (1, 2)
  • ArrayLike3 array like of length 3, eg. np.r_[1, 2, 3], [1, 2, 3], (1, 2, 3)
  • ArrayLike4 array like of length 4, eg. np.r_[1, 2, 3, 4], [1, 2, 3, 4], (1, 2, 3, 4)
  • ArrayLike6 array like of length 6

Real vectors

  • R1 is a 1D ndarray $\sim \mathbb{R}^1$
  • R2 is a 1D ndarray $\sim \mathbb{R}^2$
  • R3 is a 1D ndarray $\sim \mathbb{R}^3$
  • R4 is a 1D ndarray $\sim \mathbb{R}^4$
  • R6 is a 1D ndarray $\sim \mathbb{R}^6$
  • R8 is a 1D ndarray $\sim \mathbb{R}^8$

Real matrices

  • R1x1 $\sim \mathbb{R}^{1\times 1}$
  • R2x2 $\sim \mathbb{R}^{2\times 2}$
  • R3x3 $\sim \mathbb{R}^{3\times 3}$
  • R4x4 $\sim \mathbb{R}^{4\times 4}$
  • R6x6 $\sim \mathbb{R}^{6\times 6}$
  • R8x8 $\sim \mathbb{R}^{8\times 8}$
  • R1x3 $\sim \mathbb{R}^{1\times 3}$
  • R3x1 $\sim \mathbb{R}^{3\times 1}$
  • R1x2 $\sim \mathbb{R}^{1\times 2}$
  • R2x1 $\sim \mathbb{R}^{2\times 1}$

Points

  • Points2 2D points, columnise, $\sim \mathbb{R}^{2\times N}$
  • Points3 2D points, columnise, $\sim \mathbb{R}^{3\times N}$
  • RNx3 $\sim \mathbb{R}^{N\times 3}$

Lie groups

  • SO2Array 2D rotation matrix, element of $\mbox{SO(2)} \subset \mathbb{R}^{2\times 2}$
  • SE2Array 2D rigid-body transformation matrix, element of $\mbox{SE(2)} \subset \mathbb{R}^{3\times 3}$
  • SO3Array 3D rotation matrix, element of $\mbox{SO(3)} \subset \mathbb{R}^{3\times 3}$
  • SE3Array 3D rigid-body transformation matrix, element of $\mbox{SE(32)} \subset \mathbb{R}^{4\times 4}$

Lie algebras, skew and augmented skew matrices

  • so2Array Lie algebra of $\mbox{SO(2)} \subset \mathbb{R}^{2\times 2}$
  • se2Array Lie algebra of $\mbox{SE(2)} \subset \mathbb{R}^{3\times 3}$
  • so3Array Lie algebra of $\mbox{SO(3)} \subset \mathbb{R}^{3\times 3}$
  • se3Array Lie algebra of $\mbox{SE(32)} \subset \mathbb{R}^{4\times 4}$

Quaternions

  • QuaternionArray quaternion, element of $\mathbb{H} \sim \mathbb{R}^4$
  • UnitQuaternionArray unit quaternion, element of ${\rm S}^3 \subset \mathbb{R}^4$

2D and 3D unions

  • Rn = R2 | R3
  • SOnArray = SO2Array | SO3Array
  • SEnArray = SE2Array | SE3Array
  • sonArray = so2Array | so3Array
  • senArray = se2Array | se3Array
Clone this wiki locally
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy