Skip to content

Manhattan Distance - Notation consistency: p.x -> x_p #1351

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 13, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions src/geometry/manhattan-distance.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ tags:
## Definition
For points $p$ and $q$ on a plane, we can define the distance between them as the sum of the differences between their $x$ and $y$ coordinates:

$$d(p,q) = |p.x - q.x| + |p.y - q.y|$$
$$d(p,q) = |x_p - x_q| + |y_p - y_q|$$

Defined this way, the distance corresponds to the so-called [Manhattan (taxicab) geometry](https://en.wikipedia.org/wiki/Taxicab_geometry), in which the points are considered intersections in a well designed city, like Manhattan, where you can only move on the streets horizontally or vertically, as shown in the image below:

Expand All @@ -20,19 +20,19 @@ There are some interesting tricks and algorithms that can be done with this dist

## Farthest pair of points in Manhattan distance

Given $n$ points $P$, we want to find the pair of points $p,q$ that are farther apart, that is, maximize $|p.x - q.x| + |p.y - q.y|$.
Given $n$ points $P$, we want to find the pair of points $p,q$ that are farther apart, that is, maximize $|x_p - x_q| + |y_p - y_q|$.

Let's think first in one dimension, so $y=0$. The main observation is that we can bruteforce if $|p.x - q.x|$ is equal to $p.x - q.x$ or $-p.x + q.x$, because if we "miss the sign" of the absolute value, we will get only a smaller value, so it can't affect the answer. More formally, it holds that:
Let's think first in one dimension, so $y=0$. The main observation is that we can bruteforce if $|x_p - x_q|$ is equal to $x_p - x_q$ or $-x_p + x_q$, because if we "miss the sign" of the absolute value, we will get only a smaller value, so it can't affect the answer. More formally, it holds that:

$$|p.x - q.x| = \max(p.x - q.x, -p.x + q.x)$$
$$|x_p - x_q| = \max(x_p - x_q, -x_p + x_q)$$

So, for example, we can try to have $p$ such that $p.x$ has the plus sign, and then $q$ must have the negative sign. This way we want to find:
So, for example, we can try to have $p$ such that $x_p$ has the plus sign, and then $q$ must have the negative sign. This way we want to find:

$$\max\limits_{p, q \in P}(p.x + (-q.x)) = \max\limits_{p \in P}(p.x) + \max\limits_{q \in P}( - q.x ).$$
$$\max\limits_{p, q \in P}(x_p + (-x_q)) = \max\limits_{p \in P}(x_p) + \max\limits_{q \in P}( - x_q ).$$

Notice that we can extend this idea further for 2 (or more!) dimensions. For $d$ dimensions, we must bruteforce $2^d$ possible values of the signs. For example, if we are in $2$ dimensions and bruteforce that $p$ has both the plus signs we want to find:

$$\max\limits_{p, q \in P} [(p.x + (-q.x)) + (p.y + (-q.y))] = \max\limits_{p \in P}(p.x + p.y) + \max\limits_{q \in P}(-q.x - q.y).$$
$$\max\limits_{p, q \in P} [(x_p + (-x_q)) + (y_p + (-y_q))] = \max\limits_{p \in P}(x_p + y_p) + \max\limits_{q \in P}(-x_q - y_q).$$

As we made $p$ and $q$ independent, it is now easy to find the $p$ and $q$ that maximize the expression.

Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy