Skip to content

Update manhattan-distance.md #1490

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions src/geometry/manhattan-distance.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,11 +67,11 @@ To prove this, we just need to analyze the signs of $m$ and $n$. And it's left a

We may apply this equation to the Manhattan distance formula to find out that

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = \text{max}(|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 - y_1) - (x_2 - y_2)|).$$
$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = \text{max}(|(x_1 + y_1) - (x_2 + y_2)|, |(y_1 - x_1) - (y_2 - x_2)|).$$

The last expression in the previous equation is the [Chebyshev distance](https://en.wikipedia.org/wiki/Chebyshev_distance) of the points $(x_1 + y_1, x_1 - y_1)$ and $(x_2 + y_2, x_2 - y_2)$. This means that, after applying the transformation
The last expression in the previous equation is the [Chebyshev distance](https://en.wikipedia.org/wiki/Chebyshev_distance) of the points $(x_1 + y_1, y_1 - x_1)$ and $(x_2 + y_2, y_2 - x_2)$. This means that, after applying the transformation

$$\alpha : (x, y) \to (x + y, x - y),$$
$$\alpha : (x, y) \to (x + y, y - x),$$

the Manhattan distance between the points $p$ and $q$ turns into the Chebyshev distance between $\alpha(p)$ and $\alpha(q)$.

Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy