Skip to content

[LeetCode] 22. Generate Parentheses #22

Open
@grandyang

Description

@grandyang


请点击下方图片观看讲解视频
Click below image to watch YouTube Video
Video

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Example 1:

**Input:** n = 3
**Output:** ["((()))","(()())","(())()","()(())","()()()"]

Example 2:

**Input:** n = 1
**Output:** ["()"]

Constraints:

  • 1 <= n <= 8

在 LeetCode 中有关括号的题共有七道,除了这一道的另外六道是 Score of ParenthesesValid Parenthesis StringRemove Invalid ParenthesesDifferent Ways to Add ParenthesesValid ParenthesesLongest Valid Parentheses。这道题给定一个数字n,让生成共有n个括号的所有正确的形式,对于这种列出所有结果的题首先还是考虑用递归 Recursion 来解,由于字符串只有左括号和右括号两种字符,而且最终结果必定是左括号3个,右括号3个,所以这里定义两个变量 left 和 right 分别表示剩余左右括号的个数,如果在某次递归时,左括号的个数大于右括号的个数,说明此时生成的字符串中右括号的个数大于左括号的个数,即会出现 ')(' 这样的非法串,所以这种情况直接返回,不继续处理。如果 left 和 right 都为0,则说明此时生成的字符串已有3个左括号和3个右括号,且字符串合法,则存入结果中后返回。如果以上两种情况都不满足,若此时 left 大于0,则调用递归函数,注意参数的更新,若 right 大于0,则调用递归函数,同样要更新参数,参见代码如下:

C++ 解法一:

class Solution {
public:
    vector<string> generateParenthesis(int n) {
        vector<string> res;
        dfs(n, n, "", res);
        return res;
    }
    void dfs(int left, int right, string cur, vector<string> &res) {
        if (left > right) return;
        if (left == 0 && right == 0) res.push_back(cur);
        else {
            if (left > 0) dfs(left - 1, right, cur + '(', res);
            if (right > 0) dfs(left, right - 1, cur + ')', res);
        }
    }
};

Java 解法一:

public class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> res = new ArrayList<String>();
        helper(n, n, "", res);
        return res;
    }
    void helper(int left, int right, String out, List<String> res) {
        if (left < 0 || right < 0 || left > right) return;
        if (left == 0 && right == 0) {
            res.add(out);
            return;
        }
        helper(left - 1, right, out + "(", res);
        helper(left, right - 1, out + ")", res);
    }
}

再来看那一种方法,这种方法是 CareerCup 书上给的方法,感觉也是满巧妙的一种方法,这种方法的思想是找左括号,每找到一个左括号,就在其后面加一个完整的括号,最后再在开头加一个 (),就形成了所有的情况,需要注意的是,有时候会出现重复的情况,所以用 HashSet 数据结构,好处是如果遇到重复项,不会加入到结果中,最后我们再把 HashSet 转为 vector 即可,参见代码如下::

n=1: ()

n=2: (()) ()()

n=3: (()()) ((())) ()(()) (())() ()()()

C++ 解法二:

class Solution {
public:
    vector<string> generateParenthesis(int n) {
        unordered_set<string> st;
        if (n == 0) st.insert("");
        else {
            vector<string> pre = generateParenthesis(n - 1);
            for (auto a : pre) {
                for (int i = 0; i < a.size(); ++i) {
                    if (a[i] == '(') {
                        a.insert(a.begin() + i + 1, '(');
                        a.insert(a.begin() + i + 2, ')');
                        st.insert(a);
                        a.erase(a.begin() + i + 1, a.begin() + i + 3);
                    }
                }
                st.insert("()" + a);
            }
        }
        return vector<string>(st.begin(), st.end());
    }
};

Java 解法二:

public class Solution {
    public List<String> generateParenthesis(int n) {
        Set<String> res = new HashSet<String>();
        if (n == 0) {
            res.add("");
        } else {
            List<String> pre = generateParenthesis(n - 1);
            for (String str : pre) {
                for (int i = 0; i < str.length(); ++i) {
                    if (str.charAt(i) == '(') {
                        str = str.substring(0, i + 1) + "()" + str.substring(i + 1, str.length());
                        res.add(str);
                        str = str.substring(0, i + 1) +  str.substring(i + 3, str.length());
                    }
                }
                res.add("()" + str);
            }
        }
        return new ArrayList(res);
    }
}

Github 同步地址:

#22

类似题目:

Remove Invalid Parentheses

Different Ways to Add Parentheses

Longest Valid Parentheses

Valid Parentheses

Score of Parentheses

Valid Parenthesis String

Letter Combinations of a Phone Number

Check if a Parentheses String Can Be Valid

参考资料:

https://leetcode.com/problems/generate-parentheses/

https://leetcode.com/problems/generate-parentheses/discuss/10127/An-iterative-method.

https://leetcode.com/problems/generate-parentheses/discuss/10337/My-accepted-JAVA-solution

https://leetcode.com/problems/generate-parentheses/discuss/10105/Concise-recursive-C%2B%2B-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)

知识星球 喜欢请点赞,疼爱请打赏❤️~.~

微信打赏

|

Venmo 打赏


---|---

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      pFad - Phonifier reborn

      Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

      Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


      Alternative Proxies:

      Alternative Proxy

      pFad Proxy

      pFad v3 Proxy

      pFad v4 Proxy