Skip to content

hanyoseob/python-FT-properties

Repository files navigation

FT-properties

Reference


1) Linearity

Reference

Definition

For any complex numbers $a \in \mathbb{C}$ and $b \in \mathbb{C}$,

$h(x) = af(x) + bg(x)$ $\xleftrightarrow{\mathcal{F}~(\textrm{Fourier transform})}$ $\hat{h}(\xi) = a \cdot \hat{f}(\xi) + b \cdot \hat{g}(\xi)$

Execution

    $ python demo_fourier_properties_1_linearity.py

Results

alt text

2) Shift in Spatial domain

Reference

Definition

For any real number $x_0 \in \mathbb{R}$,

$h(x) = f(x-x_0)$ $\xleftrightarrow{\mathcal{F}~(\textrm{Fourier transform})}$ $\hat{h}(\xi) = e^{-2 \pi i x_0 \xi}\hat{f}(\xi)$

Execution

    $ python demo_fourier_properties_2_shift_in_spatial_domain.py

Results

alt text

3) Shift in Fourier domain

Reference

Definition

For any real number $\xi_0 \in \mathbb{R}$,

$h(x) = e^{2 \pi i x \xi_0}f(x)$ $\xleftrightarrow{\mathcal{F}~(\textrm{Fourier transform})}$ $\hat{h}(\xi) = \hat{f}(\xi - \xi_0)$

Execution

    $ python demo_fourier_properties_3_shift_in_Fourier_domain.py

Results

alt text

4) Convolution theorem

Reference

Definition

$h(x) = (f*g)(x) = \int_{-\infty}^{\infty}{f(y)g(x-y)dy}$ $\xleftrightarrow{\mathcal{F}~(\textrm{Fourier transform})}$ $\hat{h}(\xi) = \hat{f}(\xi) \cdot \hat{g}(\xi)$

where, * is convolution operator and $\cdot$ is element-wise multiplication.

Execution for 1D example

    $ python demo_fourier_properties_4_1d_convolution_vs_multiplication.py

Execution for 2D example

    $ python demo_fourier_properties_5_2d_convolution_vs_multiplication.py

Results

alt text (a) 1D example alt text (b) 2D example

Releases

No releases published

Packages

No packages published

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy