Skip to content

jmaczan/yolov3-tiny-openvino

Repository files navigation

yolov3-tiny-openvino

High performance human detector using YOLOv3-tiny with OpenVINO and OpenCV in C++

Build

chmod +x build_release.sh
./build_release.sh

Output path is build/yolov3-tiny-openvino

Run

Download onnx model from here https://docs.openvino.ai/2022.3/omz_models_model_yolo_v3_tiny_onnx.html

cd build && ./yolov3-tiny-openvino <path_to_model_in_onnx_format> <path_to_input_image> [compile_target]

Performance

Lenovo ThinkPad x230 8GB, Debian 12, 6.1.0-23-amd64:

  • Detection: 0.32s

Macbook Air M2 16GB, macOS 14.6.1:

  • Detection: 0.15s

Useful resources

Cite

If you use this software in your research, please use the following citation:

@software{Maczan_yolov3tinyopenvino_2024,
author = {Maczan, Jędrzej Paweł},
title = {{yolov3-tiny-openvino - High performance human detector}},
url = {https://github.com/jmaczan/yolov3-tiny-openvino},
year = {2024},
publisher = {GitHub}
}

License

GPL-3.0 license

Jędrzej Maczan, 2024

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy