Skip to content

madisonmay/Tomorrow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Codeship Status for madisonmay/Tomorrow

Tomorrow

Magic decorator syntax for asynchronous code in Python 2.7.

Please don't actually use this in production. It's more of a thought experiment than anything else, and relies heavily on behavior specific to Python's old style classes. Pull requests, issues, comments and suggestions welcome.

Installation

Tomorrow is conveniently available via pip:

pip install tomorrow

or installable via git clone and setup.py

git clone git@github.com:madisonmay/Tomorrow.git
sudo python setup.py install

To ensure Tomorrow is properly installed, you can run the unittest suite from the project root:

nosetests -v 

Usage

The tomorrow library enables you to utilize the benefits of multi-threading with minimal concern about the implementation details.

Behind the scenes, the library is a thin wrapper around the Future object in concurrent.futures that resolves the Future whenever you try to access any of its attributes.

Enough of the implementation details, let's take a look at how simple it is to speed up an inefficient chunk of blocking code with minimal effort.

Naive Web Scraper

You've collected a list of urls and are looking to download the HTML of the lot. The following is a perfectly reasonable first stab at solving the task.

For the following examples, we'll be using the top sites from the Alexa rankings.

urls = [
    'http://google.com',
    'http://facebook.com',
    'http://youtube.com',
    'http://baidu.com',
    'http://yahoo.com',
]

Right then, let's get on to the code.

import time
import requests

def download(url):
    return requests.get(url)

if __name__ == "__main__":

    start = time.time()
    responses = [download(url) for url in urls]
    html = [response.text for response in responses]
    end = time.time()
    print "Time: %f seconds" % (end - start)

More Efficient Web Scraper

Using tomorrow's decorator syntax, we can define a function that executes in multiple threads. Individual calls to download are non-blocking, but we can largely ignore this fact and write code identically to how we would in a synchronous paradigm.

import time
import requests

from tomorrow import threads

@threads(5)
def download(url):
    return requests.get(url)

if __name__ == "__main__":
    start = time.time()
    responses = [download(url) for url in urls]
    html = [response.text for response in responses]
    end = time.time()
    print "Time: %f seconds" % (end - start)

Awesome! With a single line of additional code (and no explicit threading logic) we can now download websites ~10x as efficiently.

You can also optionally pass in a timeout argument, to prevent hanging on a task that is not guaranteed to return.

import time

from tomorrow import threads

@threads(1, timeout=0.1)
def raises_timeout_error():
    time.sleep(1)

if __name__ == "__main__":
    print raises_timeout_error()

How Does it Work?

Feel free to read the source for a peek behind the scenes -- it's less than 50 lines of code.

About

Magic decorator syntax for asynchronous code in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 7

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy