Skip to content

TYP: Type MaskedArray.{trace,round,cumsum,cumprod} #29307

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 2, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
TYP: Type MaskedArray.{trace,round,cumsum,cumprod}
  • Loading branch information
MarcoGorelli committed Jul 2, 2025
commit 830d1ec7c888de55f7b9d0ec537f5ef4ced81e64
2 changes: 2 additions & 0 deletions numpy/__init__.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -1741,6 +1741,7 @@ class _ArrayOrScalarCommon:
@overload
def argmin(self, /, axis: SupportsIndex | None = None, *, out: _BoolOrIntArrayT, keepdims: builtins.bool = False) -> _BoolOrIntArrayT: ...

# Keep in sync with `MaskedArray.round`
@overload # out=None (default)
def round(self, /, decimals: SupportsIndex = 0, out: None = None) -> Self: ...
@overload # out=ndarray
Expand Down Expand Up @@ -2385,6 +2386,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeT_co, _DTypeT_co]):
stable: bool | None = ...,
) -> None: ...

# Keep in sync with `MaskedArray.trace`
@overload
def trace(
self, # >= 2D array
Expand Down
61 changes: 57 additions & 4 deletions numpy/ma/core.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ from numpy import (
from numpy._globals import _NoValueType
from numpy._typing import (
ArrayLike,
DTypeLike,
NDArray,
_32Bit,
_64Bit,
Expand Down Expand Up @@ -1168,18 +1169,70 @@ class MaskedArray(ndarray[_ShapeT_co, _DTypeT_co]):
) -> _ArrayT: ...

def nonzero(self) -> tuple[_Array1D[intp], ...]: ...
def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ...

# Keep in sync with `ndarray.trace`
@overload
def trace(
self, # >= 2D MaskedArray
offset: SupportsIndex = ...,
axis1: SupportsIndex = ...,
axis2: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: None = ...,
) -> Any: ...
@overload
def trace(
self, # >= 2D MaskedArray
offset: SupportsIndex = ...,
axis1: SupportsIndex = ...,
axis2: SupportsIndex = ...,
dtype: DTypeLike = ...,
*,
out: _ArrayT,
) -> _ArrayT: ...
@overload
def trace(
self, # >= 2D MaskedArray
offset: SupportsIndex,
axis1: SupportsIndex,
axis2: SupportsIndex,
dtype: DTypeLike,
out: _ArrayT,
) -> _ArrayT: ...

def dot(self, b, out=..., strict=...): ...
def sum(self, axis=..., dtype=..., out=..., keepdims=...): ...
def cumsum(self, axis=..., dtype=..., out=...): ...

@overload # out: None (default)
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> _MaskedArray[Any]: ...
@overload # out: ndarray
def cumsum(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
@overload
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...

def prod(self, axis=..., dtype=..., out=..., keepdims=...): ...
product: Any
def cumprod(self, axis=..., dtype=..., out=...): ...

@overload # out: None (default)
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> _MaskedArray[Any]: ...
@overload # out: ndarray
def cumprod(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
@overload
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...

def mean(self, axis=..., dtype=..., out=..., keepdims=...): ...
def anom(self, axis=..., dtype=...): ...
def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
def round(self, decimals=..., out=...): ...

# Keep in sync with `ndarray.round`
@overload # out=None (default)
def round(self, /, decimals: SupportsIndex = 0, out: None = None) -> Self: ...
@overload # out=ndarray
def round(self, /, decimals: SupportsIndex, out: _ArrayT) -> _ArrayT: ...
@overload
def round(self, /, decimals: SupportsIndex = 0, *, out: _ArrayT) -> _ArrayT: ...

def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=..., *, stable=...): ...

# Keep in-sync with np.ma.argmin
Expand Down
12 changes: 12 additions & 0 deletions numpy/typing/tests/data/reveal/ma.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -383,6 +383,18 @@ assert_type(MAR_2d_f4.T, np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]
assert_type(MAR_2d_f4.nonzero(), tuple[_Array1D[np.intp], ...])
assert_type(MAR_2d_f4.nonzero()[0], _Array1D[np.intp])

assert_type(MAR_f8.trace(), Any)
assert_type(MAR_f8.trace(out=MAR_subclass), MaskedArraySubclass)

assert_type(MAR_f8.round(), MaskedArray[np.float64])
assert_type(MAR_f8.round(out=MAR_subclass), MaskedArraySubclass)

assert_type(MAR_f8.cumprod(), MaskedArray[Any])
assert_type(MAR_f8.cumprod(out=MAR_subclass), MaskedArraySubclass)

assert_type(MAR_f8.cumsum(), MaskedArray[Any])
assert_type(MAR_f8.cumsum(out=MAR_subclass), MaskedArraySubclass)

# Masked Array addition

assert_type(MAR_b + AR_LIKE_u, MaskedArray[np.uint32])
Expand Down
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy