Skip to content

orrorcol/soinn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

 ____   ___ ___ _   _ _   _ 
/ ___| / _ \_ _| \ | | \ | |
\___ \| | | | ||  \| |  \| |
 ___) | |_| | || |\  | |\  |
|____/ \___/___|_| \_|_| \_|

SOINN is a blazing fast unsupervised clustering algorithm. This is the repo for python package soinn.

Install

pip install soinn

Build by hand

python -m build

API

learn(data: object = None, dead_age: int = 100, lambda: int = 100, noise: float = 0.5, num_layer: int = 1) -> object

input : numpy array of shape (n, dim)

dead_age : the dead age of edges during the learning process, default 100

lamda : the number of iterations before removing noise, default 100

noise : the ratio of noise in input data, default 0.5

num_layer : the number of soinn layer, default 1

return : return a numpy array contaning all learned cendrioids, shape (n1, dim) where n1 represents the number of cendrioids.

Run demo

Here is a simple code using SOINN to learn cendroids of the input data

from scipy.io import loadmat

import matplotlib.pyplot as plt

import soinn



data = loadmat("train.mat")['train']

print('Load data with shape', data.shape)



ax=plt.subplot(121)

ax.set_title('origin data')

plt.plot(data[:,0], data[:,1], '.')



clus = soinn.learn(data)

print('soinn learned clusters with shape', clus.shape)

ax=plt.subplot(122)

ax.set_title('learned cendroids')

plt.plot(clus[:,0], clus[:,1], '.')



plt.show()

You can run it by:

cd demo && python demo.py

You can get the following result image

About

SOINN / 聚类 / 无监督聚类 / 快速 / clustering / unsupervised clustering / fast

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy