Saltar ao contido

Teorema da incompletude de Gödel

Na Galipedia, a Wikipedia en galego.

Os dous Teoremas da incompletude foron demostrados por Kurt Gödel en 1931.

Primeiro teorema

[editar | editar a fonte]

O primeiro teorema da incompletitude, un dos mais loubados resultados da lóxica matemática, afirma dunha forma simplificada:

En calquera formalismo matemático consistente suficientemente robusto para definir os conceptos de números naturais (da aritmética), existirá a posibilidade de formar unha afirmación indecidible, ou sexa, que non poida ser demostrada como verdadeira ou falsa.

Dun xeito mais formal, Gödel postulouno inicialmente como:

Para calquera teoría formal na que se poden demostrar uns feitos aritméticos básicos, é posible construír unha afirmación aritmética na que, se a teoría é omega-consistente, é verdade, mais non é demostrable ou refutable nesa teoría.

Aquí, "teoría" significa un conxunto de afirmacións pechadas baixo unhas certas regras de inferencia lóxica. A teoría é consistente se non contén contradicións. Omega-consistente é un termo técnico, mais estrito do que "consistente" a secas.

Segundo teorema

[editar | editar a fonte]

O segundo teorema da incompletude de Gödel, é consecuencia do primeiro, é demostrado por formalización do propio primeiro teorema en si, e enunciase como:

Ningún sistema consistente se pode utilizar para demostrar a súa propia consistencia.

Dun xeito mais formal, Gödel demostra que:

Para calquera teoría formal T na que os feitos aritméticos básicos son demostrables, T demostra a súa propia consistencia se e soamente se T é inconsistente.

Hai unha sutileza técnica no segundo teorema: ata que punto de exactitude imos expresar a consistencia de T na propia linguaxe T. Hai moitos camiños para facelo, e non todos eles levan ao mesmo resultado. En particular, diferentes formalizacións da afirmación de que T é consistente pode ser inequivalente en T, e algúns poden incluso ser demostrables.

Consecuencias

[editar | editar a fonte]

A seguinte reescritura do segundo teorema é perturbadora para os fundamentos das matemáticas:

Se para un sistema axiomático se pode demostrar, baseándose nel mesmo, que é consistente e completo, entón é inconsistente.

O resultado xeral dos dous teoremas foi devastador para unha abordaxe filosófica da matemática coñecida como Programa de Hilbert. David Hilbert propuxo que a consistencia dos sistemas máis complexos, como análise real, poderían ser probados en termos de sistemas máis simples. Así, a consistencia de toda a matemática sería reducida á aritmética básica. O segundo teorema da incompletude de Gödel mostra que a aritmética básica non pode ser usada para probar a súa propia consistencia, e polo tanto non pode ser usada para probar a consistencia de nada máis forte.

Interpretacións simples

[editar | editar a fonte]

O teorema de Gödel é quizais o máis sorprendente e comentado resultado matemático do século XX. De seguro, é o máis incomprendido e un dos únicos teoremas que se presta a acaloradas discusións filosóficas.

  • O ser humano nunca poderá chegar a comprenderse a si mesmo por unha vía racional (dedución discutible, proposta polo autor desta páxina).
  • Unha explicación xamais chega a ser totalmente autoexplicativa.

Véxase tamén

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]
  • Hofstadter, Douglas: Gödel, Escher, Bach: An Eternal Golden Braid

Este artigo tan só é un bosquexo
 Este artigo sobre matemáticas é, polo de agora, só un bosquexo. Traballa nel para axudar a contribuír a que a Galipedia mellore e medre.
 Existen igualmente outros artigos relacionados con este tema nos que tamén podes contribuír.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy