לדלג לתוכן

קבוצה צפופה

מתוך ויקיפדיה, האנציקלופדיה החופשית

בטופולוגיה, תת-קבוצה של מרחב טופולוגי נקראת קבוצה צפופה, אם כל קבוצה פתוחה ולא ריקה ב-, מכילה איבר מתוך . תכונה זו שקולה לכך שהסגור של שווה למרחב כולו.

אם מרחב מטרי, פירושו של דבר שניתן להתקרב כרצוננו לכל נקודה ב- בעזרת נקודות מ-: לכל ולכל , יש המקיימת .

קבוצת המספרים הרציונליים, , היא למשל צפופה בקבוצת המספרים הממשיים, , עם הטופולוגיה הסטנדרטית (כלומר ). היא גם צפופה בישר של סורגנפריי, .

מרחב שקיימת בו קבוצה צפופה בת מנייה נקרא מרחב ספרבילי. לדוגמה, קבוצת המספרים הרציונליים צפופה בישר הממשי, שכן כל קטע פתוח בישר הממשי מכיל מספרים רציונליים (זוהי תכונת הארכימדיות של הממשיים). לכן השדה הממשי ספרבילי.

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
ויקישיתוף מדיה וקבצים בנושא קבוצה צפופה בוויקישיתוף


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy