Ugrás a tartalomhoz

Modulus (matematika)

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A modulus az algebrai struktúrák egy fajtája, a vektortér fogalmának általánosítása, lazítása, gyengítése, amely bizonyos vektortéraxiómák elhagyásával keletkezik. Egy gyűrű feletti modulus viszonya a gyűrűhöz ahhoz hasonlít, mint egy test feletti vektortér viszonya a testhez. Az algebrában a modulusoknak számos alkalmazása van többek közt a csoportelméletben, a gyűrűelméletben és az algebrai geometriában.

A modulust egy olyan vektortérként foghatjuk fel, ahol a skalárok nem testet, hanem csak gyűrűt alkotnak.

Definíció

[szerkesztés]

Legyen adva egy gyűrű, és legyen Abel-csoport. Tegyük fel, hogy létezik egy „szorzás” művelet (ez fogja a vektorok skalárral való szorzásának szerepét kapni, egymás mellé írással jelöljük). Az -et bal oldali -modulusnak nevezzük, ha az előbbi műveletek teljesítik a következő kritériumokat:

Legyenek és . Ekkor:

  • ,
  • ,
  • .

Ha egységelemes gyűrű, akkor -et unitér modulusnak nevezzük, ha

Hasonlóan értelmezzük a jobb oldali modulust, ekkor a szorzás a másik oldalról történik. Vannak kétoldali modulusok, ezek egyszerre bal és jobb oldali modulusok, tehát a jobb oldali szorzás ugyanaz, mint a bal oldali szorzás (szokás ezt bimodulusnak is nevezni).

Példák

[szerkesztés]
  • Legyen egy Abel-csoport. Ez modulussá tehető egész számok halmaza[1] felett a következő szorzásművelettel. Legyen és ekkor -szer. Ha negatív, akkor értelem szerint -nek kell az -szeres összegét venni, ha pedig , akkor . Könnyen ellenőrizhető, hogy ez valóban modulus.
  • Legyen , tehát az -es valós mátrixok (az összeadással és a mátrixszorzással mint két művelettel), és legyen , és értelmezzük a szorzást így: minden esetén , tehát a közönséges mátrix-vektor szorzás. Ez egy bal oldali modulus, de nem kétoldali, ugyanis általában .

Irodalom

[szerkesztés]

Jegyzetek

[szerkesztés]
  1. gyűrű.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy