Ugrás a tartalomhoz

Riemann-féle zéta-függvény

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A Riemann-féle zéta-függvény a számelmélet, ezen belül az analitikus számelmélet legfontosabb komplex változós függvénye. Különböző tulajdonságai szorosan összefüggenek a prímszámok eloszlásának kérdéseivel. A nemtriviális zérushelyeire vonatkozó Riemann-sejtés sokak szerint a matematika legfontosabb megoldatlan problémája.

Definíció

[szerkesztés]

A Riemann-féle ζ(s) függvényt a

Dirichlet-sorral definiáljuk ott, ahol ez konvergens, azaz az 1-nél nagyobb valós résszel rendelkező komplex s értékekre. (Az analitikus számelméletben a komplex számokat hagyományosan s=σ+it alakban írják.)

ζ(s) analitikus folytatással az egész síkon meromorf függvénnyé terjeszthető ki, az alábbi módon:

Aminek egyetlen elsőrendű pólusa 1-ben van, az s=-2, -4, … ( ahol a szinusz nulla, és a gamma-függvény véges értéket vesz fel) helyeken zérushelyei vannak, továbbá végtelen sok zérushelye van a sávban. Ez az úgynevezett kritikus sáv.

A függvény értékei egész helyeken

[szerkesztés]

A zéta-függvény értékeit pozitív, páros helyeken Euler határozta meg:

ahol az n-edik Bernoulli-szám.

Speciálisan adódik a híres

formula, aminek meghatározása sokak hiábavaló próbalkozása után, először Eulernek sikerült (ez volt az úgynevezett Basel-probléma). Ismert továbbá, hogy racionális többszöröse.

A értékekről sokkal kevesebbet tudunk. Hosszú ideig az is ismeretlen volt, hogy irracionális szám-e. Ezt végül 1978-ban Apéry bizonyította be. 2001-ben Keith Ball és Tanguy Rivoal igazolta, hogy a Q feletti, által generált vektortér végtelendimenziós. 2002-ben Rivoal bebizonyította, hogy valamelyike irracionális. Ezt V. Zudilin megjavította arra az eredményre, hogy valamelyike irracionális. Bizonyított még, hogy végtelen sok helyen irracionális.[1]

Euler heurisztikája

[szerkesztés]

A -függvény nempozitív egész helyein felvett értékei a következőképpen adhatók meg:

és .

Érdekes módon az utóbbi értékeket Euler heurisztikus módon meghatározta. A -re vonatkozó okoskodása, azaz „igazolása” a következő volt:

Legyen . Ezt egy taggal eltolva adódik. A két sort tagról tagra összeadva -et kapunk, azaz . Hasonlóan legyen . Ismét eltolva: . Megint tagonként összeadva a két sort, azt kapjuk, hogy , azaz . Legyen végül . Ekkor , mivel az sorból az sort úgy kaphatjuk, hogy a páros sorszámú tagokhoz rendre hozzáadjuk a sor tagjait. Innen adódik.

Kapcsolat a prímszámok eloszlásával

[szerkesztés]

Már Euler felfedezte a

szorzatelőállítást, ami konvergens minden olyan s=σ+ti alakú komplex számra, ahol σ>1. Itt a p változó a prímszámokon fut végig. Valóban, ha a jobb oldali összegeket kiszorozzuk, akkor, a számelmélet alaptételének értelmében minden alakú tagot megkapunk, éspedig pontosan egyszer. Az átrendezés jogosságát az adja, hogy a feltétel miatt a szereplő sor abszolút konvergens.

A függvényegyenlet

[szerkesztés]

A függvényegyenlet összekapcsolja a függvény értékeit az s és az 1-s helyeken. Vezessük be a

függvényt. A függvény az egész komplex számsíkon analitikus és csak a kritikus sávban vannak zérushelyei (amelyek azonosak a zéta-függvény zérushelyeivel). Ekkor teljesül.

A függvényegyenlet aszimmetrikus formája:

A függvény Weierstrass-féle szorzatelőállítása:

ahol végigfut nemtriviális gyökein.

A gyökök kapcsolata a prímszámok eloszlásával

[szerkesztés]

A gyökök közvetlen kapcsolatba hozhatók a prímszámok eloszlásával a következő képlettel:

ahol a nemtriviális gyökökön fut végig és

ahol a von Mangoldt-függvény, azaz , ha , egyébként 0. Mivel a prímhatvány helyeken ugrik, a fenti képlet ezekre a számokra csak azzal a korrekcióval igaz, hogy ilyen x esetén az utolsó tag helyett . Egyszerű okoskodással belátható, hogy minél közelebb van -hez, annál közelebb van -hez. Így például ψ(x)∼x ekvivalens π(x)∼Li(x)-szel, azaz a prímszámtétellel. A jobb oldalon szereplő tagok esetén így alakíthatók: tehát abszolút értékük kb . Minél közelebb van a nemtriviális gyökök valós része ½-hez, annál közelebb van -hez. Konkrétan ψ(x)∼x ekvivalens azzal, hogy nincs alakú gyök és ha olyan szám amire igaz, hogy minden gyök valós része legfeljebb , akkor és így .

A gyökök eloszlása

[szerkesztés]

A ζ-függvénynek végtelen sok zérushelye van a kritikus sávban. Riemann sejtette, hogy a , téglalapban a zérushelyek száma

Ezt von Mangoldt 1895-ben gyengébb hibataggal, majd 1905-ben ezzel a hibataggal bizonyította.

1899-ben de la Vallée Poussin igazolta, hogy nincs zérushely a

tartományban. Ezt Littlewood 1922-ben a

tartományra, majd 1958-ban Korobov és Vinogradov a

tartományra javította (, tetszőleges).

Jegyzetek

[szerkesztés]
  1. T. Rivoal: La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. In: Comptes Rendus de l'Académie des Sciences. Série I. Mathématique. 331, 2000, S. 267–270. arxiv:math/0008051. doi:10.1016/S0764-4442(00)01624-4.

Kapcsolódó szócikkek

[szerkesztés]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy