Ugrás a tartalomhoz

Szabadsági fok

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A szabadsági fok kifejezés a hőtanban honosodott meg, a gázok egyik jellemzőjeként.

Elméleti alapja

[szerkesztés]

Egyatomos gázok

[szerkesztés]

Az ekvipartíció tétele szerint minden gázatom azonos mennyiségű mozgási energiával rendelkezik. Ennek nagysága , ahol a T a Kelvinben mért hőmérséklet, a k pedig a Boltzmann-állandó. Ebben a formában azonban ez csak az egyatomos gázokra igaz.

Többatomos gázok

[szerkesztés]

A többatomos gázoknak nem csak lendületük, perdületük is van. Ez ahhoz hasonlítható, mikor egy rönköt legurítanak a lejtőről, és a lendület és a perdület összege (ha a gördülési súrlódást elhanyagoljuk) együtt teszi ki a helyzeti energiát. A forgásból adódó energia annyiszor , ahány merőleges forgási tengelye van a molekulának. Ez kétatomos gázoknál 2, többatomosnál 3. A két "képlet" egyesítve megadja az egy molekulára jutó átlagos energiát, alakban, ahol az f a szabadsági fok, ami tehát egyatomos gázoknál (He, Ne, Ar, Kr, Xe, Rn) ; kétatomos gázoknál (pl: H2, N2, 02) , többatomosokra (pl: CH4) általában .

A haladó mozgás szabadsági foka

[szerkesztés]

A haladó mozgáshoz három szabadsági fok van rendelve. Fontos megemlíteni, hogy a gázok nem csak az egymásra merőleges tengelyek mentén mozognak. Azonban bármilyen irányú mozgást fel lehet bontani erre a három irányra, mint egy háromdimenziós koordináta-rendszer. Az itt adódó értékek vektoros összege azonban nagyságában, és irányában is egyenlő lesz az eredeti iránnyal.

A szabadsági fok fogalmának általánosítása

[szerkesztés]

A szabadsági fok egy anyagi rendszer állapotának egyértelmű meghatározásához szükséges, egymástól független mennyiségek száma. E szám nagy mértékben függ a vizsgálni kívánt jelenségtől, azonos anyagi rendszerek esetén is.

Pl. ha a rendszer egyetlen, tömegpontnak tekinthető részecskéből áll, és szabadon mozoghat, úgy pl. mechanikai állapotát valamely pillanatban a részecske hely- és sebességvektorának három-három komponense határozza meg, vagyis a tömegpont mechanikai szabadságfoka 6. Ezért N számú tömegpontból álló rendszer mechanikai szabadságfoka 6N.
Ha viszont energiamérlegét vizsgáljuk, akkor - a mechanika klasszikus közelítésében - az energiáját a hely- és sebességkoordináták négyzetes összege határozza meg. Vagyis: ahány tagja van ennek az összegnek, energetikai értelemben akkora a rendszer szabadságfoka.
Ha viszont nem mozoghat szabadon a tömegpont, pl. egy fonalhoz kötött tömegpont csak egy gömbfelületen mozoghat, akkor helykoordinátái közül csak 2 független - további megszorítás érvényes a síkingára, az esetben meg csak 1 a szabadsági fok.

Kis nyomású gázok esetén a molekuláris mozgások felbonthatók a molekula tömegközéppontjának elmozdulására, a merev molekula forgására és - ha ennek vizsgálatára is szükségünk van - az atomok molekulán belüli rezgéseire is. Így vizsgálva a szabadsági fokok számát, molekulánként a transzláció 3 szabadsági foka (a sebességvektor három komponensének megfelelően), a rotáció 2 vagy 3 szabadsági foka mellett (aszerint, hogy a molekula lineáris-e vagy sem), minden rezgés pedig 3 további szabadsági fokot jelent (amplitúdót, periódusidőt és kezdőfázist), ha a rendszer hőmérséklete elég magas ahhoz, hogy a molekulák klasszikus harmonikus oszcillátorként viselkedjenek.
Ezzel szemben, ha makroszkópikus termodinamikai rendszerként vizsgáljuk e gázt, szabadsági foka egyenlő - termodinamikai vizsgálatok szempontjából - a rendszer állapotát meghatározó, független termodinamikai állapothatározók számával. Ez a legegyszerűbb, egykomponensű, egyfázisú rendszer esetében 2 (pl. nyomás és hőmérséklet vagy nyomás és térfogat lehet a két állapothatározó; állapotegyenlet). Bonyolultabb rendszerek szabadsági fokát a fázistörvény határozza meg.

Jegyzetek

[szerkesztés]

Források

[szerkesztés]
  • Fizika közép és emelt szintre készülőknek 2007. (Szerzők: Dr. Halász Tibor, Dr. Jurisits József, Dr. Szűcs József), ISBN 978-963-697-466-4 (Mozaik Kiadó)
  • Fizika 10. NTK, 3. kiadás 2006. (Szerző: Ifj. Zátonyi Sándor) ISBN 963-19-4880-3
  • Természettudományi lexikon VI. (Sz–Z). Főszerk. Erdey-Grúz Tibor. Budapest: Akadémiai. 1968. 10–11. o.
  • Magyar nagylexikon XVI. (Sel–Szö). Főszerk. Bárány Lászlóné. Budapest: Magyar Nagylexikon. 2003. 396. o. ISBN 963-9257-15-X  
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy