Ugrás a tartalomhoz

Viriáltétel

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A mechanikában a viriáltétel általános összefüggést ad valamely, helyzeti erők által határolt, N részecskét tartalmazó stabil rendszer időbeli átlagos teljes kinetikus energiája () és időbeli átlagos teljes helyzeti energiája () között (a szögletes zárójelek a zárójelben lévő mennyiség időbeli átlagát jelölik). Matematikailag az elmélet állítása:

ahol Fk a k-ik részecskére ható erő, mely az rk pozícióban van.

A ’viriál’ szó a latin 'vis'-ből származik, mely erőt, vagy energiát jelent. A definíciót Rudolf Clausius német fizikus adta meg 1870-ben.[1] A viriáltétel jelentősége az, hogy lehetővé teszi az átlagos kinetikus energia kiszámítását, még komplikált rendszerek esetén is, amikor a statisztikai mechanika módszereivel ez nem oldható meg. Ez az átlagos, és teljes kinetikus energia az ekvipartíció-tételhez hasonlóan kapcsolódik a rendszer hőkapacitásához. A viriáltétel akkor is érvényes, ha egy rendszer nincs termikus egyensúlyi állapotban. A viriáltételt sokféleképpen szokták általánosítani, a legjobban ismert eljárás, a tenzoros forma. Ha egy rendszerben két részecske között ható erő a potenciális energiából V(r) = αr n származik, akkor ez arányos a részecskék közötti átlagos távolsággal r, és felírhatjuk az elmélet egyszerűbb formuláját:

Vagyis a teljes átlagos kinetikus energia kétszerese egyenlő az átlagos teljes helyzeti energia n-szeresével . A V(r), két részecske közötti helyzeti energia, VTOT a rendszer teljes helyzeti energiája, azaz, a V(r), helyzeti energiák szummája, az összes részecskepárra vonatkozik. Egy példa az ilyen rendszerekre a csillag, melyet saját gravitációja tart össze, ahol n egyenlő −1.

Definíciók

[szerkesztés]

N számú részecske esetén az I a tehetetlenség skalár momentuma (lendülete):

ahol mk és rk jelölik a k-ik részecske tömegét és pozícióját. . rk=|rk| a vektor pozíció vektor nagyságrendje. A skalár viriális G:

ahol pk a k –ik részecske momentum vektora. Feltételezve, hogy a tömegek állandóak, a viriális G, fele a tehetetlenségi momentum idő szerinti deriváltja

fordítva:

ahol mk a k-ik részecske tömege, a tiszta erő, mely a részecskére hat, és T a rendszer teljes kinetikus energiája:

Általánosítás

[szerkesztés]

1903-ban Lord Rayleigh publikált egy általánosítást a viriáltételre.[2] Henri Poincaré a kozmológia stabilitással kapcsolatban használta a viriáltétel egy képletét.[3] Ledoux, 1945-ben fejlesztett ki egy változatot az elméletre.[4] Egy tenzoros formulát fejlesztett Parker.[5] Chandrasekhar[6] és Fermi.[7] Pollard 1964-ben publikálta a viriális elmélet általánosítását az inverz négyzetes törvény esetére :[8][9] igaz, és csak akkor igaz, ha .[10]

Az elektromágneses tér és a viriáltétel

[szerkesztés]

A viriáltétel kiterjeszthető az elektromágneses térre.[11] Az eredmény:

ahol I a tehetetlenségi momentum, a G az elektromágneses tér momentum sűrűsége, T a folyadék kinetikus energiája, U a részecskék véletlenszerű termikus energiája, WE és WM az elektromos – és elektromágneses energiák. pik a folyadék-nyomás tenzor, a lokális mozgó koordináta-rendszerben kifejezve.

és Tik az elektromágneses nyomás tenzor,

A plazmoid, a mágneses tér és a plazma végső konfigurációja. A viriáltétel alapján könnyen belátható, hogy ilyen konfiguráció létrejöhet, ha nem éri külső erőhatás. Nyomás nélkül a felületi integrál eltűnik az ilyen végső konfigurációnál.. Mivel az összes jobb oldali kifejezés pozitív, a tehetetlenségi momentum gyorsulása szintén pozitív lesz. A kiterjedési időt is egyszerű megjósolni τ. Ha a teljes tömeget, M egy R átmérő korlátozza, akkor a tehetetlenségi momentum nagyjából MR2, és a bal oldal MR22. A jobb oldali kifejezések összeadódnak közel pR3-é, ahol p a nagyobb plazma nyomás vagy mágneses nyomás. E kettő kifejezést egyenlővé téve, és megoldva τ-re, kapjuk:

ahol cs az ion-akusztikus hullám (vagy Alfvén-hullám, ha a mágneses nyomás magasabb,mint a plazma nyomás) sebessége. Így a plazmoid várható élettartama az akusztikus vagy Alfvén-hullám átmeneti ideje lesz.

Asztrofizika

[szerkesztés]

A viriáltételt gyakran alkalmazzák az asztrofizikában, különösen a gravitációs helyzeti energia, és a kinetikus-, vagy termikus energia összefüggésében. Egy általános viriális összefüggés: , ahol , a tömeg, ,az átmérő , a sebesség, és , a hőmérséklet A konstansok: Gravitációs állandó: , Boltzmann-állandó: , Proton tömege: .

Galaxisok és kozmológia

[szerkesztés]

Az asztronómiában, a galaxisok méretét és tömegét gyakran a „viriális átmérő”, és a „viriális tömeg” kifejezéseivel határozzák meg. A galaxisok méreteit igen nehéz meghatározni. A viriáltétel gyakran kényelmes módszert ad ezen mennyiségek meghatározására. A galaxisok dinamikájába, a tömeg meghatározása gyakran a gázok és csillagok forgási sebességével történik, feltételezve a kepleri pályákat. A viriáltételt alkalmazva felhasználható a sebesség diszperzió, . Ha vesszük a részecskénti kinetikus energiát, T = (1/2) v2 ~ (3/2) M 2, és a potenciális energiát: U ~ (3/5)(GM/R), irhatjuk: . Itt az az átmérő, , az átmérőn belüli tömeg. A viriális tömeget, és átmérőt általában arra az átmérőre határozzák meg, ahol a sebesség diszperzió maximum: . Ezek az összefüggések nagyságrendi információt adnak. Egy alternatív meghatározás: Mivel az átmérőt igen nehéz megfigyelni, gyakran közelítik úgy, hogy a sűrűség nagyobb egy specifikus tényezővel, mint a kritikus sűrűség, , ahol a a Hubble-paraméter, és a a gravitációs állandó. Egy általánosan használt tényező a 200. Így a viriális tömeg az átmérőhöz képest: .

Irodalom

[szerkesztés]
  • Collins, G. W: The Virial Theorem in Stellar Astrophysics. (hely nélkül): Pachart Press. 1978.  

További információk

[szerkesztés]

Kapcsolódó szócikkek

[szerkesztés]

Jegyzetek

[szerkesztés]
  1. Clausius, RJE (1870). „On a Mechanical Theorem Applicable to Heat”. Philosophical Magazine, Ser. 4 40, 122–127. o. 
  2. Lord Rayleigh (1903). „Unknown”. 
  3. Poincaré, H. Lectures on Cosmological Theories. Paris: Hermann 
  4. Ledoux, P. (1945). „On the Radial Pulsation of Gaseous Stars”. The Astrophysical Journal 102, 143–153. o. DOI:10.1086/144747. (Hozzáférés: 2012. március 24.) 
  5. Parker, E.N. (1954). „Tensor Virial Equations” (PDF). Physical Review 96 (6), 1686–1689. o. DOI:10.1103/PhysRev.96.1686. (Hozzáférés: 2012. március 24.) 
  6. Chandrasekhar, S, Lebovitz NR (1962). „The Potentials and the Superpotentials of Homogeneous Ellipsoids” (PDF). Ap. J. 136, 1037–1047. o. DOI:10.1086/147456. (Hozzáférés: 2012. március 24.) 
  7. Chandrasekhar, S, Fermi E (1953). „Problems of Gravitational Stability in the Presence of a Magnetic Field” (PDF). Ap. J. 118, 116. o. DOI:10.1086/145732. (Hozzáférés: 2012. március 24.) 
  8. Pollard, H. (1964). „A sharp form of the virial theorem” (PDF). Bull. Amer. Math. Soc. LXX (5), 703–705. o. DOI:10.1090/S0002-9904-1964-11175-7. (Hozzáférés: 2012. március 24.) 
  9. Pollard, Harry. Mathematical Introduction to Celestial Mechanics. Englewood Cliffs, NJ: Prentice–Hall, Inc. (1966) 
  10. (1996. July) „A high-temperature approximation for the path-integral quantum Monte Carlo method” (PDF). Journal of Physics A: Mathematical and General 29 (13), 3471–3494. o. DOI:10.1088/0305-4470/29/13/018. (Hozzáférés: 2012. március 24.) 
  11. Schmidt, George. Physics of High Temperature Plasmas, Second, Academic Press, 72. o. (1979) 

Fordítás

[szerkesztés]
  • Ez a szócikk részben vagy egészben a Virial theorem című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy