Jump to content

Խաղերի տեսություն

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Խաղերի տեսությունը մաթեմատիկայի մի ճյուղ է, որն ուսումնասիրում է ռացիոնալ ակտորների կողմից օպտիմալ որոշումների ընդունումը մրցակցության ժամանակ։ Մրցակցություն ասելով հասկանում ենք մի երևույթ, որին մասնակցում են տարբեր կողմեր՝ տարբեր հնարավորություններով ընձեռված, որոնք ունեն տարբեր հետաքրքրություններ և որոնք ազատ են ընտրելու իրենց համար առավել արդյունավետ ռազմավարությունը։ Մրցակցության վերաբերող առանձին մասեր քննարկվել են տարբեր մաթեմատիկոսների կողմից։ Բայց առավել լայն մաթեմատիկայի այս ճյուղը առաջին անգամ քննարկվել է ամերիկացի գիտնականներ Նեյմանի և Մորգենշտերնի կողմից (1944), որպես մաթեմատիկական մոտեցման մեթոդ մրցակցային տնտեսության մեջ։ Հետագա զարգացման հետևանքով այն ավելի զարգացավ և դարձավ առանձին ճյուղ։

Խաղերի տեսությունը (game theory) որոշումների ընդունման մաթեմատիկական մոդելավորում է, որը իրականացվում է երկու կամ ավելի ակտորների կողմից և որտեղ յուրաքանչյուրը հետապնդում է մեկ կամ մի քանի նպատակ, և այդ նպատակները կարող են ամբողջովին կամ մասնակի կերպով համընկնել։

Շատ հաճախ գործնականում հանդիպում են այնպիսի դեպքեր, երբ անհրաժեշտ է ընդունել որոշումներ ինֆորմացիայի բացակայության պայմաններում, առաջանում են իրադրություններ, երբ երկու (կամ մի քանի) կողմերը հետապնդում են տարբեր նպատակներ, և հաճախ յուրաքանչյուր կողմի հետագա գործունեությունը կախված է մրցակցի համապատասխան քայլերից, այսինքն՝ յուրաքանչյուր խաղացողի քայլերի արդյունքը կախված է լինում հակառակորդի պատասխան քայլից, խաղի հիմնական նպատակը խաղացողներից մեկի հաղթանակն է (սա իհարկե 0 միավոր խաղի դեպքում)։ Տնտեսության մեջ այսպիսի դեպքեր շատ հաճախ են հանդիպում, օրինակ՝ փոխհարաբերությունները արտադրողի և մատակարարի միջև, վաճառողի և սպառողի միջև և այլն։ Այս բոլոր դեպքերում էլ կողմերից յուրաքանչյուրը ձգտում է մինիմալացնել իր ծախսերը՝ մաքսիմալացնելով իր շահույթը։ Բացի դրանից կողմերից յուրաքանչյուրը պետք է հաշվի նստի ոչ միայն իր նպատակների հետ, այլ նաև հակառակորդ կողմի նպատակների հետ՝ հաշվի առնելով այն բոլոր անհայտ և հայտնի որոշումները, որոնք կարող են ընդունվել գործընկեր կազմակերպությունների կողմից։

Ծագած այսպիսի խնդիրների ճիշտ լուծման համար անհրաժեշտ են հիմնավորված և գործող մեթոդներ։ Հենց այսպիսի մեթոդների մշակմամբ էլ զբաղվում է խաղերի տեսությունը։ Խաղերի տեսության հիմնական հասկացությունները՝

Հակամարտության մաթեմատիկական մոդելը անվանում են խաղ, կողմերը, որոնք մասնակցում են այդ խաղին, անվանում են խաղացողներ, իսկ խաղի ելքն էլ՝ շահույթ։

Խաղը կոչվում է 2 հոգանոց խաղ, եթե այդ խաղին մասնակցում են երկու խաղացողներ, և այն կոչվում է n հոգանոց երբ խաղին մասնակցում են n խաղացող։

Խաղը կոչվում է 0 միավոր խաղ (կամ антагонистической), եթե խաղացողներից մեկի շահումը հավասար է մյուս խաղացողի նույնչափ կորստին, այսինքն եթե a նշանակենք առաջին խաղացողի շահումը, իսկ b՝ մյուս խաղացողինը, ապա 0 միավոր խաղի դեպքում b = -а, դրա համար էլ բավարար է դիտարկել միայն a։ Խաղացողների կողմից իրականացվող գործընթացները կոչվում են քայլեր։ Քայլերն կարող են լինել գիտակցական և պատահական։ Գիտակցական քայլերը խաղացողի կողմից գիտակից կերպով կատարված ընտրությունն է հնարավոր քայլերից (օրինակ քայլը շախմատում)։ Պատահական քայլը պատահական ընտրված քայլն է (օրինակ, երբ բաժանում ենք խաղաթղթերը)։

Խաղացողի ռազմավարություն անվանում են այն քայլերի ամբողջությունը, որը կատարում է խաղացողը յուրաքանչյուր առաջացած իրավիճակում։ Սովորաբար խաղի ընթացքում յուրաքանչյուր քայլում խաղացողը ընտրություն է կատարում՝ կախված կոնկրետ իրավիճակից։ Բայց տեսականորեն հնարավոր է բոլոր որոշումները ընդունել միանգամից, որոնք կարող են իրականացվել իրար հետևից առաջացած ցանկացած իրավիճակում։

Խաղը կոչվում է վերջավոր, եթե յուրաքանչյուր խաղացողի ռազմավարության քանակը սահմանափակ է, և անվերջ՝ հակառակ դեպքում։

Խաղը լուծելու համար պետք է յուրաքանչյուր խաղացող ռազմավարություն մշակի, որը պետք է բավարարի օպտիմալությանը, այսինքն խաղացողներից մեկը պետք է ստանա մաքսիմալ շահույթ, երբ երկրորդը հավատարիմ է մնում իր ռազմավարությանը։ Նույն ժամանակ երկրորդ խաղացողը պետք է ունենա մինիմում վնաս, եթե առաջինը հավատարիմ է մնում իր ռազմավարությանը։ Այսպիսի ռազմավարությունները կոչվում են օպտիմալ ռազմավարություններ։ Վերջիններս պետք է բավարարեն դիմացկունության պայմանին, այսինքն՝ յուրաքանչյուր խաղացողի համար շահավետ չպետք է լինի հրաժարվել իր ռազմավարությունից նույն խաղում։

Եթե խաղը կրկնվում է շատ անգամներ, ապա խաղացողներին հետաքրքրում է ոչ թե հաղթանակը կամ պարտությունը յուրաքանչյուր կարճ խաղերում, այլ միջին հաղթանակը կամ պարտությունը։

Խաղերի տեսության նպատակը հանդիսանում է օպտիմալ ռազմավարության մշակումը յուրաքանչյուր խաղացողի համար։

Խաղերը կարելի է դասակարգել ըստ խաղացողների քանակի, ռազմավարության քանակի, ըստ խաղացողների փոխհարաբերության, ըստ շահույթի չափի, քայլերի քանակության, ըստ ինֆորմացիայի հասանելիության։

Ըստ խաղացողների քանակի տարբերում են երկու և n հոգանոց խաղեր։ Ավելի լայն ուսումնասիրված է երկու հոգանոց խաղերը։ Ինչքան ավելի շատ խաղացողներ, այնքան ավելի շատ խնդիրներ։

Ըստ ռազմավարությունների քանակի՝ կարելի է բաժանել վերջավոր և անվերջ խաղեր։ Եթե կան վերջավոր թվով ռազմավարություններ, ապա խաղը անվանում են վերջավոր, հակառակ դեպքում՝ անվերջ։

Ըստ խաղացողների միջև փոխհրաբերությունների՝ կարելի է բաժանել հետևյալ տեսակի խաղերը՝

  1. Ոչ կոալիցիոն խաղեր. Խաղացողները չեն կարող փոխհամաձայնեցնել իրենց քայլերը,
  2. Կոալիցիոն կամ կոոպերատիվ խաղեր. Կարող են կոալիցիա կազմել։

Ըստ շահույթի չափի խաղերը բաժանվում են՝ 0 միավոր խաղի (բոլոր խաղացողների ընդհանուր կապիտալը չի փոխվում) և ոչ զրոյական խաղեր։

Խաղերը տարբերվում են նաև ըստ հաղթանակի ֆունկցիայի. Մատրիցային, բիմատրիցային, անընդհատ, դուելների տեսակի և այլն։

Արտաքին հղումներ

[խմբագրել | խմբագրել կոդը]
Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 4, էջ 715
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy