Lompat ke isi

Matriks rotasi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Dalam aljabar linear, matriks rotasi adalah matriks transformasi yang digunakan untuk melakukan rotasi dalam ruang Euclidean. Misalnya, dengan menggunakan konvensi di bawah ini, matriks

memutar titik-titik pada bidang xy berlawanan arah jarum jam melalui θ terhadap sumbu x terhadap titik asal sistem koordinat kartesius dua dimensi. Untuk melakukan rotasi pada titik bidang dengan koordinat standar v = (x, y), harus ditulis sebagai vektor kolom, dan dikalikan dengan matriks R:

Jika x dan y adalah koordinat titik akhir suatu vektor, di mana x adalah kosinus dan y adalah sinus, maka persamaan di atas menjadi rumus sudut penjumlahan trigonometri. Memang, matriks rotasi dapat dilihat sebagai rumus sudut penjumlahan trigonometri dalam bentuk matriks. Salah satu cara untuk memahami ini adalah dengan mengatakan bahwa kita memiliki sebuah vektor pada sudut 30° dari sumbu x, dan kita ingin memutar sudut itu sebesar 45° lebih jauh. Kita hanya perlu menghitung koordinat titik akhir vektor pada 75°.

Dalam dua dimensi

[sunting | sunting sumber]

Dalam dua dimensi, matriks rotasi standar memiliki bentuk berikut:

Ini memutar vektor kolom melalui perkalian matriks berikut,

Jadi, koordinat baru (x′, y′) dari suatu titik (x, y) setelah rotasi adalah

Misalnya, ketika vektor

diputar dengan sudut θ, koordinat barunya adalah

dan ketika vektor

diputar dengan sudut , koordinat barunya adalah

Referensi

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy