Lompat ke isi

Mobilitas listrik

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Mobilitas listrik adalah kemampuan partikel bermuatan (misalnya elektron atau proton) untuk bergerak melalui suatu medium sebagai tanggapan terhadap medan listrik yang menariknya. Pemisahan ion sesuai mobilitasnya dalam fase gas disebut spektrometri mobilitas ion [en], dalam fase cair disebut sebagai elektroforesis.

Ketika partikel bermuatan dalam media gas atau cairan diberi perlakuan medan listrik yang seragam, ia akan dipercepat hingga mencapai kecepatan hanyut [en] yang konstan sesuai rumus berikut:

dengan

adalah kecepatan hanyut (satuan SI: m/s),
adalah besaran medan listrik yang diaplikasikan (V/m),
adalah mobilitas (m2/(V·s)).

Dengan kata lain, mobilitas listrik suatu partikel didefinisikan sebagai rasio kecepatan hanyut terhadap besaran medan listrik:

Sebagai contoh, mobilitas ion natrium (Na+) dalam air pada 25 °C adalah 5,19×10−8 m2/(V·s).[1] Ini berarti bahwa ion natrium dalam medan listrik 1 V/m akan memiliki rata-rata kecepatan hanyut sebesar 5,19×10−8 m/s. Nilai tersebut dapat diperoleh dari penentuan konduktivitas ion dalam larutan.

Mobilitas listrik berbanding lurus terhadap muatan bersih partikel. Ini adalah dasar demonsrasi Robert Millikan bahwa muatan listrik terjadi dalam satuan diskrit, yang besarannya adalah muatan elektron.

Mobilitas listrik juga berbanding terbalik dengan jari-jari Stokes suatu ion, yaitu jari-jari efektif ion bergerak termasuk sembarang molekul air atau pelarut lainnya yang bergerak bersamanya. Hal ini benar karena ion tersolvasi yang bergerak pada kecepatan hanyut konstan tunduk pada dua gaya yang sama tetapi berlawanan arah: gaya listrik dan gaya friksi , dengan adalah koefisien friksi, adalah viskositas larutan. Untuk ion yang berbeda dengan muatan yang sama, seperti Li+, Na+, dan K+, gaya listriknya sama, sehingga laju hanyut dan mobilitasnya berbanding terbalik terhadap jari-jari .[2] Faktanya, penentuan konduktivitas menunjukkan bahwa mobilitas ion meningkat dari Li+ ke Cs+, dan oleh karena itu jari-jari Stokesnya turun dari Li+ ke Cs+. Ini berlawanan dengan urutan jari-jari ion suatu kristal dan menunjukkan bahwa dalam larutannya, ion yang lebih kecil (Li+) lebih mudah terhidrasi daripada yang lebih besar (Cs+).[2]

Mobilitas dalam fase gas

[sunting | sunting sumber]

Mobilitas didefinisikan untuk semua spesies dalam fase gas, yang sebagian besar ditemui dalam fisika plasma dan didefinisikan sebagai

dengan

adalah muatan spesies,
adalah frekuensi tumbukan transfer momentum,
adalah massa

Mobilitas terkait dengan koefisien difusi spesies melalui persamaan pasti (diperlukan termodinamika) yang dikenal sebagai hubungan Einstein [en]:

dengan

adalah konstanta Boltzmann,
adalah temperatur gas,
adalah koefisien difusi.

Jika jarak bebas purata [en] didefinisikan dalam hal transfer momentum, maka didapatkan koefisien difusi

.

Tetapi baik jarak bebas purata transfer momentum dan frekuensi tabrakan transfer momentum sulit untuk dihitung. Banyak jarak bebas purata lainnya yang dapat didefinisikan. Dalam fase gas, sering didefinisikan sebagai jarak bebas purata difusional, dengan mengasumsikan bahwa hubungan perkiraan sederhana adalah tepat:

dengan adalah akar purata kuadrat [en] kelajuan molekul gas:

dengan adalah massa spesies yang berdifusi. Persamaan pendekatan ini menjadi eksak ketika digunakan untuk mendefinisikan jarak bebas purata difusional.

Mobilitas listrik adalah dasar untuk pengendapan elektrostatik [en], yang digunakan untuk menghilangkan partikel dari gas buangan pada skala industri. Partikel diberi muatan dengan memaparkannya pada ion dari lucutan elektris [en] dengan adanya medan yang kuat. Partikel-partikel memperoleh mobilitas listrik dan didorong oleh medan ke elektrode pengumpul.

Terdapat instrumen yang memilih partikel dengan kisaran mobilitas listrik sempit, atau partikel dengan mobilitas listrik lebih besar dari nilai yang telah ditentukan.[3] Instrumen pertama umumnya disebut sebagai "penganalisis mobilitas diferensial". Mobilitas yang dipilih sering diidentifikasi dengan diameter partikel bola bermuatan tunggal, sehingga "diameter mobilitas listrik"nya menjadi karakteristik partikel, terlepas dari apakah itu benar-benar berbentuk bola atau tidak.

Melewatkan partikel dengan mobilitas yang dipilih ke detektor seperti penghitung partikel kondensasi [en] memungkinkan jumlah konsentrasi partikel dengan mobilitas yang saat ini dipilih untuk diukur. Dengan memvariasikan mobilitas yang dipilih dari waktu ke waktu, dapat diperoleh data mobilitas vs konsentrasi. Teknik ini diterapkan dalam scanning mobility particle sizers.

Referensi

[sunting | sunting sumber]
  1. ^ Keith J. Laidler and John H. Meiser, Physical Chemistry (Benjamin/Cummings 1982), p. 274. ISBN 0-8053-5682-7.
  2. ^ a b Atkins, P. W.; de Paula, J. (2006). Physical Chemistry (edisi ke-8th). Oxford University Press. hlm. 764–6. ISBN 0198700725. 
  3. ^ E. O. Knutson and K. T. Whitby (1975). "Aerosol classification by electric mobility: Apparatus, theory, and applications". J. Aerosol Sci. 6 (6): 443–451. Bibcode:1975JAerS...6..443K. doi:10.1016/0021-8502(75)90060-9. 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy