Vai al contenuto

Automorfismo interno

Da Wikipedia, l'enciclopedia libera.

Un automorfismo interno di un gruppo è un automorfismo indotto da un elemento del gruppo tramite coniugio, cioè un automorfismo nella forma

per un elemento fissato del gruppo. Infatti questa funzione è un omomorfismo iniettivo e suriettivo, ovvero un isomorfismo.

Un automorfismo che non è interno è detto esterno.

In un gruppo abeliano l'unico automorfismo interno è l'identità. Inoltre due elementi ed che appartengono allo stesso laterale del centro inducono lo stesso automorfismo interno. Infatti se con nel centro allora

= =

L'insieme degli automorfismi interni forma un gruppo, denotato con , che è un sottogruppo normale del gruppo degli automorfismi del gruppo . Il gruppo è isomorfo al gruppo quoziente , dove è il centro di .

Nel gruppo simmetrico su elementi, se , tutti gli automorfismi sono interni.

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy