Vai al contenuto

Lemma fondamentale di Neyman-Pearson

Da Wikipedia, l'enciclopedia libera.

In statistica, il lemma fondamentale di Neyman-Pearson asserisce che, quando si opera un test d'ipotesi tra due ipotesi semplici H0:  θ=θ0 e H1:  θ=θ1, il rapporto delle funzioni di verosomiglianza che rigetta in favore di quando

rappresenta il test di verifica più potente a livello di significatività α per una soglia k. Se il test è il più potente per tutti i , si dice che è quello uniformemente più potente (in inglese UMP) tra le alternative del set.

Il lemma deve questo nome ai suoi formulatori, Jerzy Neyman e Egon Pearson.

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy