Vai al contenuto

Norma uniforme

Da Wikipedia, l'enciclopedia libera.
Rappresentazione geometrica in di

In analisi matematica, la norma uniforme, norma del sup o norma di Chebyshev di una funzione definita in un dominio a valori reali o complessi è la quantità non negativa:

Se non è una funzione limitata in , questa quantità risulta infinita (ad esempio per la funzione esponenziale in ). Restringendosi invece allo spazio vettoriale delle funzioni definite in e limitate, assume sempre valore finito e soddisfa le proprietà di una norma.

Se è una funzione continua su un insieme compatto, allora l'estremo superiore è raggiunto per il teorema di Weierstrass, quindi possiamo sostituire l'estremo superiore con il massimo. In questo caso, la norma è anche chiamata norma del massimo.

In particolare, nel caso di un vettore in uno spazio di dimensione finita, prende la forma:

La ragione del pedice "∞" è data dal seguente limite, valido se e la misura di è finita:

dove:

dove è la norma p (e l'integrale diventa una somma se è un insieme discreto).

La funzione binaria:

è quindi una metrica nello spazio di tutte le funzioni limitate nel particolare dominio. Una successione converge uniformemente alla funzione se e solo se:

  • (EN) Walter Rudin, Principles of Mathematical Analysis, New York, McGraw-Hill, 1964, p. 151, ISBN 0-07-054235-X.
  • (EN) Taylor, A. E. and Lay, D. C. Introduction to Functional Analysis, 2nd ed. New York: Wiley, 1980

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy