Vai al contenuto

Numero pratico

Da Wikipedia, l'enciclopedia libera.

Un numero si dice pratico quando tutti i numeri interi positivi si possono scrivere in almeno una maniera come somma di divisori distinti di . I primi numeri pratici sono: 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54[1].

Per esempio, 8 è un numero pratico poiché tutti gli interi da 1 a 7 possono essere scritti come somma dei suoi divisori 1, 2, 4 e 8. La proprietà è verificata per i suoi divisori e inoltre si ha che , , e .

Come i numeri primi, i numeri pratici si distribuiscono in maniera irregolare sui numeri naturali, e se è il numero di numeri pratici che non superano , si può dimostrare che per due opportune costanti e :

.

Nel 1984, furono proposte delle congetture simili a note congetture relative ai numeri primi: la congettura di Goldbach e la congettura dei numeri primi gemelli. Queste congetture furono poi dimostrate per i numeri pratici da Melfi nel 1996: ogni numero pari si può esprimere come una somma di due numeri pratici; esistono infinite terne di numeri pratici gemelli della forma .

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy