Vai al contenuto

Primo teorema di Euclide

Da Wikipedia, l'enciclopedia libera.

In geometria, il primo teorema di Euclide è un teorema attinente al triangolo rettangolo che deriva, assieme al secondo, dalla proposizione 8 del VI libro degli Elementi di Euclide; nei testi scolastici può essere enunciato in due modi diversi a seconda della proprietà che si desidera sottolineare:

  1. mediante l'equiestensione tra figure:
    In ogni triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo che ha per dimensioni l'ipotenusa e la proiezione di quel cateto sull'ipotenusa.
  2. mediante relazioni tra segmenti:
    In ogni triangolo rettangolo ciascun cateto è medio proporzionale tra l'ipotenusa e la proiezione del cateto stesso sull'ipotenusa.

Enunciato con l'equivalenza

[modifica | modifica wikitesto]

In un triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo avente per dimensioni l'ipotenusa e la proiezione di quel cateto sull'ipotenusa stessa.

Dimostrazione

Facendo riferimento alla figura, si consideri il triangolo rettangolo . Sul cateto si costruisca il quadrato e sia la proiezione del cateto sull'ipotenusa . Si costruisca il rettangolo avente congruente a . Si prolunghi il lato dalla parte di fino ad incontrare in la retta contenente il segmento e in la retta contenente il segmento . Si vuole dimostrare che il quadrato è equivalente al rettangolo .

Si considerino ora i triangoli e . Essi hanno:

  • è congruente a per costruzione,
  • l'angolo congruente all'angolo perché retti.
  • l'angolo è congruente all'angolo perché entrambi complementari dello stesso angolo .

Dunque, per il secondo criterio di congruenza dei triangoli, i triangoli e sono congruenti, e in particolare si ha che è congruente a .

Si considerino il quadrato e il parallelogramma . Essi hanno la stessa base e la stessa altezza (se consideriamo come la base l'altezza relativa ad essa è , perché e appartengono alla stessa retta) e quindi sono equivalenti.

Si considerino il parallelogramma e il rettangolo . Essi hanno basi congruenti (infatti è congruente a per dimostrazione precedente, e è congruente a per costruzione, quindi è congruente a per la proprietà transitiva della congruenza) e la stessa altezza (infatti e appartengono alla stessa retta, e così pure e ), quindi sono equivalenti.

Allora, per la proprietà transitiva dell'equivalenza, il quadrato è equivalente al rettangolo .

Enunciato con la proporzione

[modifica | modifica wikitesto]

In un triangolo rettangolo il cateto è medio proporzionale tra l'ipotenusa e la proiezione del cateto stesso sull'ipotenusa.

In formule, facendo riferimento al triangolo rettangolo in figura: . In modo equivalente: ·.

Dimostrazione

[modifica | modifica wikitesto]

Si considerino i triangoli e . Essi hanno tutti gli angoli congruenti (sono entrambi rettangoli e hanno l'angolo in in comune), e quindi sono simili per il primo criterio di similitudine. Da ciò si ricava: .

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy