Vai al contenuto

Test di Lucas-Lehmer-Riesel

Da Wikipedia, l'enciclopedia libera.

In matematica, il test di Lucas-Lehmer-Riesel è un test di primalità per i numeri della forma N = k2n − 1, con 2n > k. Il test è stato elaborato da Hans Riesel e si basa sul test di primalità di Lucas-Lehmer. È il più veloce algoritmo deterministico noto per verificare la primalità dei numeri della suddetta forma. Similmente, il test di Brillhart-Lehmer-Selfridge è il più veloce per i numeri della forma N = k2n + 1.

L'algoritmo è molto simile al test di Lucas-Lehmer, ma con un punto iniziale variabile dipendente dal valore di k.

Definiamo la successione {ui}, ponendo:

per ogni i > 0.

Allora, per un valore di partenza u0 scelto opportunamente (si veda la sezione seguente), si ha che N è primo se e solo se esso divide  un−2.

Trovare il valore di partenza

[modifica | modifica wikitesto]
  • Se k = 1 e n è primo, allora ci troviamo di fronte ad un numero di Mersenne e possiamo prendere u0 = 4.
  • Se , allora possiamo prendere .
  • Se , e oppure , allora .
  • Se oppure , e N non è divisibile per 3, allora possiamo prendere .
  • Altrimenti, ci troviamo nel caso in cui k è un multiplo di 3, ed è più difficile selezionare il valore giusto di .

L'LLR è un programma in grado di effettuare dei test di Lucas-Lehmer-Riesel. Il programma è stato elaborato da Jean Penné. Vincent Penné ha modificato il programma, rendendolo capace di effettuare test via Internet. Il software è utilizzato sia dai ricercatori di numeri primi sia da alcuni progetti sul calcolo distribuito, inclusi Riesel Sieve e PrimeGrid.

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy